Difference between revisions of "Aufgaben:Exercise 3.1Z: Influence of the Message Phase in Phase Modulation"

From LNTwww
m
 
(24 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Phasenmodulation (PM)
+
 
 +
{{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM)
 
}}
 
}}
  
[[File:P_ID1080__Mod_Z_3_1.png|right|]]
+
[[File:P_ID1080__Mod_Z_3_1.png|right|frame|Two PM signal waveforms]]
Wir betrachten die Phasenmodulation verschiedener Schwingungen
+
We will now consider the phase modulation of diverse oscillations
$$ q(t) = \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.05cm}.$$
+
:$$ q(t) = \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.05cm}.$$
Das Quellensignal ist hierbei normiert (Amplitude 1) dargestellt, so dass das phasenmodulierte Signal mit dem Modulationsindex (bzw. Phasenhub) $η$ wie folgt beschrieben werden kann:
+
The source signal is represented here in normalized form with $($amplitude  $1)$ , so that the phase-modulated signal can be characterised by the modulation index (or phase deviation)  $η$  as follows:
$$s(t) = A_{\rm T} \cdot \cos \left(\omega_{\rm T} \cdot t + \eta \cdot q(t) \right)\hspace{0.05cm}.$$
+
:$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + \eta \cdot q(t) \big]\hspace{0.05cm}.$$
Das in der oberen Grafik dargestellte Signal $s_1(t)$ ist durch die Parameterwerte $ϕ_N = –90°$ und $η_1 = 2$ charakterisiert. Die Frequenz $f_N$ dieses sinusförmigen Quellensignals soll ebenso wie die Trägerfrequenz $f_T$ aus dem dargestellten Signalausschnitt der Dauer $200 μs$ ermittelt werden.
+
*The signal   $s_1(t)$  shown in the upper graph is characterized by the parameter values  $ϕ_{\rm N} = -90^\circ$  and  $η_1 = 2$ .  
 +
*The frequency  $f_{\rm N}$  of this sinusoidal source signal as well as the carrier frequency  $f_{\rm T}$  can be determined from the signal section of duration  $200 \ \rm  µ s$  represented here.
 +
 
 +
*The signal  $s_2(t)$  possibly differs from  $s_1(t)$  due to a different message phase  $ϕ_{\rm N}$  and modulation index  $η$.  All other system parameters are unchanged from  $s_1(t)$ .
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
Das Signal $s_2(t)$ unterscheidet sich von $s_1(t)$ möglicherweise durch eine andere Nachrichtenphase $ϕ_N$ und einen anderen Modulationsindex $η$. Alle anderen Systemparameter sind gegenüber $s_1(t)$ unverändert.
 
  
'''Hinweis:''' Die Aufgabe bezieht sich auf die theoretischen Grundlagen von [http://en.lntwww.de/Modulationsverfahren/Phasenmodulation_(PM) Kapitel 3.1].  
+
''Hints:''  
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
 +
*Particular reference is made to the page  [[Modulation_Methods/Phase_Modulation_(PM)#Signal_characteristics_of_phase_modulation|Signal characteristics of phase modulation]].
 +
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Ermitteln Sie die Frequenz des Nachrichtensignals.
+
{Find the frequency &nbsp;$f_{\rm N}$&nbsp; of the message signal.
 
|type="{}"}
 
|type="{}"}
$f_N$ = { 5 3%  } $KHz$  
+
$f_{\rm N} \ = \ $ { 5 3%  } $\ \rm kHz$  
  
{Wie groß ist die Trägerfrequenz?
+
{What is the carrier frequency&nbsp;$f_{\rm T}$?
 
|type="{}"}
 
|type="{}"}
$f_T$ = { 50 3% } $KHz$
+
$f_{\rm T} \ = \ $ { 50 3% } $\ \rm kHz$
  
{Wie groß ist die maximale Phasenabweichung zwischen $z(t)$ und $s(t)$?
+
{What is the maximum phase deviation  &nbsp;$ϕ_{\rm max}$&nbsp; between &nbsp;$z(t)$&nbsp; and &nbsp;$s(t)$?
 
|type="{}"}
 
|type="{}"}
$ϕ_{max}$ = { 0.318 3% } $rad$  
+
$ϕ_{\rm max} \ = \ $ { 0.318 3% } $\ \rm rad$  
  
{Zu welcher Zeitverschiebung der Nulldurchgänge führt diese Phase?
+
{What is the maximum time shift of the zero crossings that this phase results in?
 
|type="{}"}
 
|type="{}"}
$Δt_{max}$ = { 6.37 3% } $μs$
+
$Δt_{\rm max} \ = \ $ { 6.37 3% } $\ \rm &micro; s$
  
{Bestimmen Sie den Modulationsindex $η_2$ für das Signal $s_2(t).
+
{Determine the modulation index &nbsp;$η_2$&nbsp; for the signal &nbsp;$s_2(t)$.
 
|type="{}"}
 
|type="{}"}
$η_2$ = { 2 3% }  
+
$η_2 \ = \ $ { 2 3% }  
  
{Welche Phasenlage hat das für $s_2(t)$ zugrunde liegende Quellensignal?
+
{What is the phase &nbsp;$ϕ_{\rm N2}$&nbsp; of the underlying source signal &nbsp;$q(t)$ for &nbsp;$s_2(t)$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$ϕ_{N2}$ = { -135 3% } $Grad$  
+
$ϕ_{\rm N2} \ = \ $ { -139--131 } $\ \rm Grad$  
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Man erkennt aus der Skizze, dass der dargestellte Signalausschnitt der Dauer $200 μs$ genau der Periodendauer des sinusförmigen Quellensignals entspricht. Daraus folgt $f_N = 5 kHz$. Zu den Zeitpunkten $t = 0$, $t = 100 μs$ und $t = 200 μs$ sind die Signale $z(t)$ und $s(t)$ phasensynchron. In der ersten Halbwelle von $q(t)$ kommen die Nulldurchgänge von $s(t)$ etwas früher als die des Trägersignals $z(t)$, was auf eine positive Phase hinweist. Dagegen ist im Bereich von 100 bis 200 μs die Phase $ϕ(t) < 0$.
+
'''(1)'''&nbsp; It can be seen from the sketch that the represented section of the signal of duration&nbsp; $200 \ \rm &micro; s$&nbsp; corresponds exactly to the period duration of the sinusoidal source signal.&nbsp;From this follows&nbsp; $f_{\rm N}\hspace{0.15cm}\underline{ = 5 \ \rm  kHz}$.  
 +
*At times&nbsp; $t = 0$,&nbsp; $t = 100 \ \rm  &micro; s$&nbsp; and&nbsp; $t = 200 \ \rm  &micro; s$&nbsp;, the signals &nbsp; $z(t)$&nbsp; and&nbsp; $s(t)$&nbsp; are synchronous in phase.  
 +
*In the first half-wave of &nbsp; $q(t)$&nbsp;, the zero crossings of &nbsp; $s(t)$&nbsp;come slightly earlier than those of the carrier signal&nbsp; $z(t)$ &nbsp; &rArr; &nbsp;  positive phase.  
 +
*In contrast, in the range from&nbsp; $t = 100 \ \rm  &micro; s$&nbsp; to&nbsp; $t = 200 \ \rm  &micro; s$&nbsp;, the phase&nbsp; $ϕ(t) < 0$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; $f_{\rm T}\hspace{0.15cm}\underline{ = 50 \ \rm  kHz}$, holds,
 +
*since exactly &nbsp; $10$&nbsp; periods can be counted in the shown section of &nbsp; $z(t)$ of duration&nbsp; $200 \ \rm  &micro; s$&nbsp;.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The maximum relative phase deviation is &nbsp; $ϕ_{\rm max} = η_1/(2π)\hspace{0.15cm}\underline{  ≈ 0.318}$.
 +
 
 +
 
  
 +
'''(4)'''&nbsp; Since the period of the carrier is &nbsp; $T_0 = 20 \ \rm  &micro; s$&nbsp;, we obtain&nbsp; $Δt_{\rm max} = ϕ_{\rm max} ·T_0\hspace{0.15cm}\underline{ ≈ 6.37 \ \rm  &micro; s}$.
  
'''2.''' Es gilt $f_T = 50 kHz$, da im dargestellten Signalausschnitt ($200 μs$) von $z(t)$ genau 10 Perioden abgezählt werden können.
 
  
'''3.'''  Die maximale relative Phasenabweichung beträgt $ϕ_{max} = η_1/(2π) ≈ 0.318$.
 
  
 +
'''(5)'''&nbsp; The maximum phase deviation (shift in the zero intercepts) is exactly the same for &nbsp; $s_2(t)$&nbsp; as for&nbsp; $s_1(t)$.&nbsp;
 +
*From this, we can conclude that&nbsp; $η_2 = η_1\hspace{0.15cm}\underline{ = 2}$&nbsp;.
  
'''4.'''Da die Periodendauer des Trägers $T_0 = 20 μs$ ist, erhält man $Δt_{max} = ϕ_{max} ·T0 ≈ 6.37 μs$.
 
  
'''5.''' Die maximale Phasenabweichung (Verschiebung der Nulldurchgänge) ist bei $s_2(t)$ genau so groß wie bei $s_1(t)$. Daraus kann auf $η_2 = η_1 = 2$ geschlossen werden.
 
  
'''6.'''Das Signal $s_2(t)$ ist gegenüber $s_1(t)$ um $25 μs$ nach rechts verschoben. Deshalb muss auch für die Quellensignale gelten:
+
'''(6)'''&nbsp; The signal&nbsp; $s_2(t)$&nbsp; is shifted to the right by &nbsp; $25  \ \rm  &micro; s$&nbsp; compared to &nbsp; $s_1(t)$&nbsp;. Therefore, the same must be true for the source signals:
$$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos(2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) ) = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$
+
:$$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos \hspace{-0.1cm} \big[2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) \big ] = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$
Dies entspricht der Phasenlage $ϕ_{N2} = –135°$.
+
*This corresponds to the phase position&nbsp;$ϕ_{\rm N2}\hspace{0.15cm}\underline{ = -135^\circ}$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 68: Line 93:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.1 Phasenmodulation (PM)^]]
+
[[Category:Modulation Methods: Exercises|^3.1 Phase Modulation^]]

Latest revision as of 16:54, 9 April 2022


Two PM signal waveforms

We will now consider the phase modulation of diverse oscillations

$$ q(t) = \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.05cm}.$$

The source signal is represented here in normalized form with $($amplitude  $1)$ , so that the phase-modulated signal can be characterised by the modulation index (or phase deviation)  $η$  as follows:

$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + \eta \cdot q(t) \big]\hspace{0.05cm}.$$
  • The signal  $s_1(t)$  shown in the upper graph is characterized by the parameter values  $ϕ_{\rm N} = -90^\circ$  and  $η_1 = 2$ .
  • The frequency  $f_{\rm N}$  of this sinusoidal source signal as well as the carrier frequency  $f_{\rm T}$  can be determined from the signal section of duration  $200 \ \rm µ s$  represented here.
  • The signal  $s_2(t)$  possibly differs from  $s_1(t)$  due to a different message phase  $ϕ_{\rm N}$  and modulation index  $η$.  All other system parameters are unchanged from  $s_1(t)$ .





Hints:


Questions

1

Find the frequency  $f_{\rm N}$  of the message signal.

$f_{\rm N} \ = \ $

$\ \rm kHz$

2

What is the carrier frequency $f_{\rm T}$?

$f_{\rm T} \ = \ $

$\ \rm kHz$

3

What is the maximum phase deviation  $ϕ_{\rm max}$  between  $z(t)$  and  $s(t)$?

$ϕ_{\rm max} \ = \ $

$\ \rm rad$

4

What is the maximum time shift of the zero crossings that this phase results in?

$Δt_{\rm max} \ = \ $

$\ \rm µ s$

5

Determine the modulation index  $η_2$  for the signal  $s_2(t)$.

$η_2 \ = \ $

6

What is the phase  $ϕ_{\rm N2}$  of the underlying source signal  $q(t)$ for  $s_2(t)$ ?

$ϕ_{\rm N2} \ = \ $

$\ \rm Grad$


Solution

(1)  It can be seen from the sketch that the represented section of the signal of duration  $200 \ \rm µ s$  corresponds exactly to the period duration of the sinusoidal source signal. From this follows  $f_{\rm N}\hspace{0.15cm}\underline{ = 5 \ \rm kHz}$.

  • At times  $t = 0$,  $t = 100 \ \rm µ s$  and  $t = 200 \ \rm µ s$ , the signals   $z(t)$  and  $s(t)$  are synchronous in phase.
  • In the first half-wave of   $q(t)$ , the zero crossings of   $s(t)$ come slightly earlier than those of the carrier signal  $z(t)$   ⇒   positive phase.
  • In contrast, in the range from  $t = 100 \ \rm µ s$  to  $t = 200 \ \rm µ s$ , the phase  $ϕ(t) < 0$.


(2)  $f_{\rm T}\hspace{0.15cm}\underline{ = 50 \ \rm kHz}$, holds,

  • since exactly   $10$  periods can be counted in the shown section of   $z(t)$ of duration  $200 \ \rm µ s$ .


(3)  The maximum relative phase deviation is   $ϕ_{\rm max} = η_1/(2π)\hspace{0.15cm}\underline{ ≈ 0.318}$.


(4)  Since the period of the carrier is   $T_0 = 20 \ \rm µ s$ , we obtain  $Δt_{\rm max} = ϕ_{\rm max} ·T_0\hspace{0.15cm}\underline{ ≈ 6.37 \ \rm µ s}$.


(5)  The maximum phase deviation (shift in the zero intercepts) is exactly the same for   $s_2(t)$  as for  $s_1(t)$. 

  • From this, we can conclude that  $η_2 = η_1\hspace{0.15cm}\underline{ = 2}$ .


(6)  The signal  $s_2(t)$  is shifted to the right by   $25 \ \rm µ s$  compared to   $s_1(t)$ . Therefore, the same must be true for the source signals:

$$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos \hspace{-0.1cm} \big[2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) \big ] = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$
  • This corresponds to the phase position $ϕ_{\rm N2}\hspace{0.15cm}\underline{ = -135^\circ}$.