Difference between revisions of "Aufgaben:Exercise 3.2: From the Spectrum to the Signal"

From LNTwww
 
(22 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Fouriertransformation und -rücktransformation
+
{{quiz-Header|Buchseite=Signal_Representation/Fourier_Transform_and_Its_Inverse
 
}}
 
}}
  
[[File:P_ID495__Sig_A_3_2.png|right|Spektraldarstellung der Sprungfunktion (Aufgabe A3.2)]]
+
[[File:P_ID495__Sig_A_3_2.png|right|frame|Spectral representation of the unit step function]]
  
Gegeben sei die Spektralfunktion
+
Given the spectral function
 
   
 
   
$$X(f) = \frac{{2\,{\rm V}}}{ { {\rm j}\pi f}}.$$
+
:$$X(f) = \frac{{2\,{\rm V}}}{ { {\rm j}\pi f}}.$$
  
Die zugehörige Zeitfunktion $x(t)$ kann mit Hilfe des [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|zweiten Fourierintegrals]] ermittelt werden:
+
The associated time function  $x(t)$  can be determined with the help of  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_second_Fourier_integral|The second Fourier integral]] :
 
   
 
   
$$x(t)  = \int_{ - \infty }^{ + \infty } {X(f)}  \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d} f =  x_{\rm R} (t) + {\rm j} \cdot x_{\rm I} (t),$$
+
:$$x(t)  = \int_{ - \infty }^{ + \infty } {X(f)}  \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d} f =  x_{\rm R} (t) + {\rm j} \cdot x_{\rm I} (t),$$
  
wobei für den Realteil bzw. Imaginärteil gilt:
+
where holds for the real part and the imaginary part, respectively:
 
   
 
   
$$x_{\rm R} (t) = 2\,{\rm V} \cdot \int_{ - \infty }^{ + \infty } {\frac{{\sin ( {2\pi ft} )}}{ {\pi f}}}\hspace{0.1cm} {\rm d}f, \hspace{0.5cm}x_{\rm I} (t) = -2\, {\rm V} \cdot \int_{ - \infty }^{ + \infty } {\frac{ {\cos ( {2\pi ft} )}}{ {\pi f}}} \hspace{0.1cm}{\rm d}f.$$
+
:$$x_{\rm R} (t) = 2\,{\rm V} \cdot \int_{ - \infty }^{ + \infty } {\frac{{\sin ( {2\pi ft} )}}{ {\pi f}}}\hspace{0.1cm} {\rm d}f, $$
 +
:$$x_{\rm I} (t) = -2\, {\rm V} \cdot \int_{ - \infty }^{ + \infty } {\frac{ {\cos ( {2\pi ft} )}}{ {\pi f}}} \hspace{0.1cm}{\rm d}f.$$
  
''Hinweise:''
 
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Fouriertransformation_und_-rücktransformation|Fouriertransformation und -rücktransformation]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Benutzen Sie zur Lösung eventuell die nachfolgenden Angaben:
 
  
:$$x( {t = 0}) = \int_{ - \infty }^{ + \infty } {X( f )}\hspace{0.1cm} {\rm d}f,\hspace{0.5cm} X( {f = 0} ) = \int_{ - \infty }^{ + \infty } {x( t)}\hspace{0.5cm} {\rm d}t ,\hspace{0.1cm}\int_0^\infty  {\frac{{\sin ( {ax} )}}{x}}\hspace{0.1cm} {\rm d}x = {\rm sign} ( a ) \cdot{\pi }/{2}. $$
 
  
  
===Fragebogen===
+
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fourier Transform and its Inverse]].
 +
 +
*If necessary, use the following information for the solution:
 +
 
 +
:$$x( {t = 0}) = \int_{ - \infty }^{ + \infty } {X( f )}\hspace{0.1cm} {\rm d}f,\hspace{0.5cm} X( {f = 0} ) = \int_{ - \infty }^{ + \infty } {x( t)}\hspace{0.1cm} {\rm d}t ,\hspace{0.5cm}\int_0^\infty  {\frac{{\sin ( {ax} )}}{x}}\hspace{0.1cm} {\rm d}x = {\rm sign} ( a ) \cdot{\pi }/{2}. $$
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen treffen für das Zeitsignal $x(t)$ zu?
+
{Which of the following statements are true for the time signal&nbsp; $x(t)$&nbsp;?
|type="[]"}
+
|type="()"}
- $x(t)$ ist eine komplexe Funktion.
+
- $x(t)$&nbsp; is a complex function.
+ $x(t)$ ist rein reell.
+
+ $x(t)$&nbsp; is purely real.
- $x(t)$ ist rein imaginär.
+
- $x(t)$&nbsp; is purely imaginary.
  
{Berechnen Sie den Signalverlauf $x(t)$ im gesamten Definitionsgebiet. Welche Werte treten zu den Zeiten $t = 1\, \text{ms}$ und $t = -\hspace{0.1cm}1\, \text{ms}$auf?
+
{Calculate the signal curve&nbsp; $x(t)$&nbsp; in the entire definition area.&nbsp; Which values occur at the times&nbsp; $t = 1\, \text{ms}$&nbsp; and&nbsp; $t = -\hspace{-0.05cm}1\, \text{ ms}$?
 
|type="{}"}
 
|type="{}"}
$x(t=1\, \text{ms})$ &nbsp;=  { 2 3% } &nbsp;$(\text{V})$
+
$x(t=+1\, \text{ms}) \ = \ $ { 2 3% } $\ \text{V}$
$x(t=-1 \text{ms})$ &nbsp;= { -2.1 --1.9 } &nbsp;$(\text{V})$
+
$x(t=-1 \text{ms})\hspace{0.2cm} = \ $  { -2.1--1.9 } $\ \text{V}$
  
{Wie lautet der Signalwert zum Zeitpunkt $t = 0$?
+
{What is the signal value at time&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
$x(t=0) &nbsp;= $ { 0. } &nbsp;$(\text{V})$
+
$x(t=0) \ = \ $ { 0. } $\ \text{V}$
  
{Wie groß ist der Spektralwert bei der Frequenz $f = 0$?
+
{What is the spectral value at the frequency&nbsp; $f = 0$?
 
|type="{}"}
 
|type="{}"}
$x(f=0) &nbsp;= $ { 0. } &nbsp;$(\text{V})$&nbsp;$(\text{V/Hz})$
+
$X(f=0) \ = \ ${ 0. } $\ \text{V/Hz}$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Beim Signalanteil $x_I(t)$ ist der Integrand eine ungerade Funktion (gerader Zähler, ungerader Nenner). Somit ist das Integral von $-\infty$ bis $+\infty$ gleich Null.
+
'''(1)'''&nbsp; Correct is the <u>proposed solution 2</u> &nbsp; &rArr; &nbsp;$x(t)$&nbsp; is <u>purely real</u>:
Demgegenüber liefert beim reellen Anteil $x_R(t)$ der gerade Integrand (ungerader Zähler, ungerader Nenner) einen von Null verschiedenen Wert. Daraus folgt: $x(t)$ ist rein reell.
+
*For the imaginary signal component&nbsp; &rArr; &nbsp;  $x_{\rm I}(t)$&nbsp; the integrand is an odd function&nbsp; (even numerator, odd denominator).  
 +
*Thus the integral from&nbsp; $-\infty$&nbsp; bis&nbsp; $+\infty$&nbsp; is zero.
 +
*In contrast, for the real component&nbsp; $x_{\rm R}(t)$ &nbsp; &rArr; &nbsp;  even integrand&nbsp; (odd numerator, odd denominator)&nbsp; yields a non-zero value.
  
'''2.''' Mit $a = 2\pi t$ kann für das Zeitsignal geschrieben werden:
+
 
 +
 
 +
'''(2)'''&nbsp; With the abbreviation&nbsp; $a = 2\pi t$&nbsp; can be written for the time signal:
 
   
 
   
$$x(t) = x_{\rm R} \left( t \right) = \frac{{4\,{\rm V}}}{\pi }\int_0^\infty  {\frac{{\sin( {af} )}}{f}}\hspace{0.1cm} {\rm d}f.$$
+
:$$x(t) = x_{\rm R} \left( t \right) = \frac{{4\,{\rm V}}}{\pi }\int_0^\infty  {\frac{{\sin( {af} )}}{f}}\hspace{0.1cm} {\rm d}f.$$
  
Dies führt unter Verwendung des angegebenen bestimmten Integrals zum Ergebnis:
+
This leads to the result using the given definite integral:
 
   
 
   
$$x(t) = \frac{{4\,{\rm V}}}{\pi } \cdot \frac{\pi }{2} \cdot {\mathop{\rm sign}\nolimits} ( t ) = 2\;{\rm V} \cdot {\mathop{\rm sign}\nolimits} ( t ).$$
+
:$$x(t) = \frac{{4\,{\rm V}}}{\pi } \cdot \frac{\pi }{2} \cdot {\mathop{\rm sign}\nolimits} ( t ) = 2\;{\rm V} \cdot {\mathop{\rm sign}\nolimits} ( t ).$$
  
Für $t > 0$ ist $x(t) = +2$ V. Entsprechend gilt $x(t) = –2$ V für $t < 0$. Das Signal $x(t)$ beschreibt also eine Sprungfunktion von –2 V auf +2 V.
+
*For&nbsp; $t > 0$&nbsp; &nbsp; $x(t) = +2\,\text{V}$ .  
 +
*Correspondingly,&nbsp; $x(t) = -\hspace{-0.1cm}2\,\text{V}$&nbsp; applies for&nbsp; $t < 0$.  
 +
*The signal&nbsp; $x(t)$&nbsp; thus describes a step function from&nbsp; $-\hspace{-0.05cm}2\,\text{V}$ auf $+2\,\text{V}$.
  
'''3.''' Bei $t = 0$ besitzt $x(t)$ eine Sprungstelle. Der rechtsseitige Grenzwert für $t \rightarrow 0$ lautet $x_+ = 2$ V. Nähert man sich von negativen Zeiten der Sprungstelle beliebig nahe, so erhält man $x_– = –2$ V. Für den tatsächlichen Signalwert bei $t = 0$ gilt dann:
+
 
 +
 
 +
'''(3)'''&nbsp;  $x(t)$&nbsp; has a jumping point at&nbsp; $t = 0$.&nbsp; The right-hand limit value for&nbsp; $t \rightarrow 0$&nbsp; is&nbsp; $x_+ = +2\,\text{V}$.  
 +
*If one approaches the jumping point of negative times as close as desired, one obtains&nbsp; $x_– = -\hspace{-0.05cm}2\,\text{V}$.
 +
*The following then applies to the actual signal value at&nbsp; $t = 0$:
 
   
 
   
$$x( {t = 0} ) = \frac{1}{2}\cdot ( x_{+} +    x_{-} ) \hspace{0.15 cm}\underline{= 0}.$$
+
:$$x( {t = 0} ) = {1}/{2}\cdot ( x_{+} +    x_{-} ) \hspace{0.15 cm}\underline{= 0}.$$
  
Zum gleichen Ergebnis kommt man bei Berücksichtigung der Beziehung
+
*The same result is obtained by considering the relation
  
$$x( t = 0) = \int_{ - \infty }^{ + \infty } {X( f)}\hspace{0.1cm} {\rm d}f = 0.$$
+
:$$x( t = 0) = \int_{ - \infty }^{ + \infty } {X( f)}\hspace{0.1cm} {\rm d}f = 0.$$
  
'''4.''' Der Spektralwert bei $f = 0$ ist gleich dem Integral von $-\infty$ bis $+\infty$ über die Zeitfunktion $x(t)$:
+
 
 +
'''(4)'''&nbsp; The spectral value at&nbsp; $f = 0$&nbsp; is equal to the integral from&nbsp; $-\infty$&nbsp; to&nbsp; $+\infty$&nbsp; over the time function&nbsp; $x(t)$:
 
   
 
   
$$X( f = 0) = \int_{ - \infty }^{ + \infty } {x( t)}\hspace{0.1cm} {\rm d}t \hspace{0.15 cm}\underline{= 0}.$$
+
:$$X( f = 0) = \int_{ - \infty }^{ + \infty } {x( t)}\hspace{0.1cm} {\rm d}t \hspace{0.15 cm}\underline{= 0}.$$
 
 
Hier noch ein zweiter Lösungsweg: Der rechtsseitige Grenzwert für $f$ → 0 ist $X_+ = –\text{j} \cdot \infty$, der linksseitige Grenzwert $X_- = \text{j} \cdot \infty$. Auch bezüglich des Spektralwertes bei $f = 0$ gilt also der Zusammenhang:
 
  
$$X( {f = 0}) = {1}/{2}\cdot \left( {X_{ +}  + X_{-}  } \right) = 0.$$
+
Here is a second solution:
 +
*The right&ndash;hand limit for&nbsp; $f → 0$&nbsp; is&nbsp; $X_+ = -\text{j} \cdot \infty$,&ndash; and the left&ndash;hand limit&nbsp; $X_- = \text{j} \cdot \infty$.
 +
*So the relationship also applies with regard to the spectral value at &nbsp; $f = 0$:
 +
:$$X( {f = 0}) = {1}/{2}\cdot \left( {X_{ +}  + X_{-}  } \right) = 0.$$
 
   
 
   
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^3. Aperiodische Signale - Impulse^]]
+
[[Category:Signal Representation: Exercises|^3.1 Fourier Transform and Its Inverse^]]

Latest revision as of 16:25, 21 April 2021

Spectral representation of the unit step function

Given the spectral function

$$X(f) = \frac{{2\,{\rm V}}}{ { {\rm j}\pi f}}.$$

The associated time function  $x(t)$  can be determined with the help of  The second Fourier integral :

$$x(t) = \int_{ - \infty }^{ + \infty } {X(f)} \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d} f = x_{\rm R} (t) + {\rm j} \cdot x_{\rm I} (t),$$

where holds for the real part and the imaginary part, respectively:

$$x_{\rm R} (t) = 2\,{\rm V} \cdot \int_{ - \infty }^{ + \infty } {\frac{{\sin ( {2\pi ft} )}}{ {\pi f}}}\hspace{0.1cm} {\rm d}f, $$
$$x_{\rm I} (t) = -2\, {\rm V} \cdot \int_{ - \infty }^{ + \infty } {\frac{ {\cos ( {2\pi ft} )}}{ {\pi f}}} \hspace{0.1cm}{\rm d}f.$$



Hints:

  • If necessary, use the following information for the solution:
$$x( {t = 0}) = \int_{ - \infty }^{ + \infty } {X( f )}\hspace{0.1cm} {\rm d}f,\hspace{0.5cm} X( {f = 0} ) = \int_{ - \infty }^{ + \infty } {x( t)}\hspace{0.1cm} {\rm d}t ,\hspace{0.5cm}\int_0^\infty {\frac{{\sin ( {ax} )}}{x}}\hspace{0.1cm} {\rm d}x = {\rm sign} ( a ) \cdot{\pi }/{2}. $$


Questions

1

Which of the following statements are true for the time signal  $x(t)$ ?

$x(t)$  is a complex function.
$x(t)$  is purely real.
$x(t)$  is purely imaginary.

2

Calculate the signal curve  $x(t)$  in the entire definition area.  Which values occur at the times  $t = 1\, \text{ms}$  and  $t = -\hspace{-0.05cm}1\, \text{ ms}$?

$x(t=+1\, \text{ms}) \ = \ $

$\ \text{V}$
$x(t=-1 \text{ms})\hspace{0.2cm} = \ $

$\ \text{V}$

3

What is the signal value at time  $t = 0$?

$x(t=0) \ = \ $

$\ \text{V}$

4

What is the spectral value at the frequency  $f = 0$?

$X(f=0) \ = \ $

$\ \text{V/Hz}$


Solution

(1)  Correct is the proposed solution 2   ⇒  $x(t)$  is purely real:

  • For the imaginary signal component  ⇒   $x_{\rm I}(t)$  the integrand is an odd function  (even numerator, odd denominator).
  • Thus the integral from  $-\infty$  bis  $+\infty$  is zero.
  • In contrast, for the real component  $x_{\rm R}(t)$   ⇒   even integrand  (odd numerator, odd denominator)  yields a non-zero value.


(2)  With the abbreviation  $a = 2\pi t$  can be written for the time signal:

$$x(t) = x_{\rm R} \left( t \right) = \frac{{4\,{\rm V}}}{\pi }\int_0^\infty {\frac{{\sin( {af} )}}{f}}\hspace{0.1cm} {\rm d}f.$$

This leads to the result using the given definite integral:

$$x(t) = \frac{{4\,{\rm V}}}{\pi } \cdot \frac{\pi }{2} \cdot {\mathop{\rm sign}\nolimits} ( t ) = 2\;{\rm V} \cdot {\mathop{\rm sign}\nolimits} ( t ).$$
  • For  $t > 0$    $x(t) = +2\,\text{V}$ .
  • Correspondingly,  $x(t) = -\hspace{-0.1cm}2\,\text{V}$  applies for  $t < 0$.
  • The signal  $x(t)$  thus describes a step function from  $-\hspace{-0.05cm}2\,\text{V}$ auf $+2\,\text{V}$.


(3)  $x(t)$  has a jumping point at  $t = 0$.  The right-hand limit value for  $t \rightarrow 0$  is  $x_+ = +2\,\text{V}$.

  • If one approaches the jumping point of negative times as close as desired, one obtains  $x_– = -\hspace{-0.05cm}2\,\text{V}$.
  • The following then applies to the actual signal value at  $t = 0$:
$$x( {t = 0} ) = {1}/{2}\cdot ( x_{+} + x_{-} ) \hspace{0.15 cm}\underline{= 0}.$$
  • The same result is obtained by considering the relation
$$x( t = 0) = \int_{ - \infty }^{ + \infty } {X( f)}\hspace{0.1cm} {\rm d}f = 0.$$


(4)  The spectral value at  $f = 0$  is equal to the integral from  $-\infty$  to  $+\infty$  over the time function  $x(t)$:

$$X( f = 0) = \int_{ - \infty }^{ + \infty } {x( t)}\hspace{0.1cm} {\rm d}t \hspace{0.15 cm}\underline{= 0}.$$

Here is a second solution:

  • The right–hand limit for  $f → 0$  is  $X_+ = -\text{j} \cdot \infty$,– and the left–hand limit  $X_- = \text{j} \cdot \infty$.
  • So the relationship also applies with regard to the spectral value at   $f = 0$:
$$X( {f = 0}) = {1}/{2}\cdot \left( {X_{ +} + X_{-} } \right) = 0.$$