Difference between revisions of "Aufgaben:Exercise 3.2Z: (3, 1, 3) Convolutional Encoder"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
+
{{quiz-Header|Buchseite=Channel_Coding/Algebraic_and_Polynomial_Description}}
  
[[File:P_ID2625__KC_Z_3_2_neu.png|right|frame|Faltungscodierer mit den Parametern  $k = 1, \ n = 3$ und $m = 3$]]
+
[[File:P_ID2625__KC_Z_3_2_neu.png|right|frame|Convolutional encoder with parameters  $k = 1, \ n = 3$ and $m = 3$.]]
  
Der dargestellte Faltungscodierer wird durch die Parameter   
+
The presented convolutional encoder is defined by the parameters   
*$k = 1$  $($nur eine Informationssequenz  $\underline{u})$  sowie 
+
*$k = 1$  $($only one information sequence  $\underline{u})$  and 
* $n = 3$  $($drei Codesequenzen $\underline{x}^{(1)}, \ \underline{x}^{(2)}, \ \underline{x}^{(3)})$   
+
* $n = 3$  $($three code sequences $\underline{x}^{(1)}, \ \underline{x}^{(2)}, \ \underline{x}^{(3)})$   
  
  
charakterisiert. Aus der Anzahl der Speicherzellen ergibt sich das Gedächtnis  $m = 3$.  
+
characterized. From the number of memory cells, the memory  $m = 3$.  
  
Mit dem Informationsbit  $u_i$  zum Codierschritt  $i$  erhält man die folgenden Codebits:
+
With the information bit  $u_i$  to the coding step  $i$  the following code bits are obtained:
 
:$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i} + u_{i-1} + u_{i-3}\hspace{0.05cm},$$
 
:$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i} + u_{i-1} + u_{i-3}\hspace{0.05cm},$$
 
:$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i} + u_{i-1} + u_{i-2} + u_{i-3} \hspace{0.05cm},$$
 
:$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i} + u_{i-1} + u_{i-2} + u_{i-3} \hspace{0.05cm},$$
 
:$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}  + u_{i-2} \hspace{0.05cm}.$$
 
:$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}  + u_{i-2} \hspace{0.05cm}.$$
  
Daraus lassen sich Teilmatrizen  $\mathbf{G}_l$  ableiten, wie auf der Seite  [[Channel_Coding/Algebraische_und_polynomische_Beschreibung#Aufteilung_der_Generatormatrix_in_Teilmatrizen|Aufteilung der Generatormatrix inTeilmatrizen]]  beschrieben.  
+
From this, partial matrices  $\mathbf{G}_l$  can be derived, as described on the page  [[Channel_Coding/Algebraic_and_Polynomial_Description#Division_of_the_generator_matrix_into_partial_matrices|"Division of the generator matrix into partial matrices"]] .  
  
*Für die Generatormatrix kann somit geschrieben werden:
+
*For the generator matrix can thus be written:
 
:$$ { \boldsymbol{\rm G}}=\begin{pmatrix}
 
:$$ { \boldsymbol{\rm G}}=\begin{pmatrix}
 
{ \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots  & { \boldsymbol{\rm G}}_m & & & \\
 
{ \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots  & { \boldsymbol{\rm G}}_m & & & \\
Line 25: Line 25:
 
\end{pmatrix}\hspace{0.05cm}.$$
 
\end{pmatrix}\hspace{0.05cm}.$$
  
*Für die Codesequenz $\underline{x} = (x_1^{(1)}, \ x_1^{(2)}, \ x_1^{(3)}, \ x_2^{(1)}, \ x_2^{(2)}, \ x_2^{(3)}, \ \text{...})$ gilt:
+
*For the code sequence $\underline{x} = (x_1^{(1)}, \ x_1^{(2)}, \ x_1^{(3)}, \ x_2^{(1)}, \ x_2^{(2)}, \ x_2^{(3)}, \ \text{...})$ holds:
 
:$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}}  \hspace{0.05cm}.$$
 
:$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}}  \hspace{0.05cm}.$$
  
Line 34: Line 34:
  
  
''Hinweise:''
+
Hints:
* Die Aufgabe gehört zum Kapitel  [[Channel_Coding/Algebraische_und_polynomische_Beschreibung| Algebraische und polynomische Beschreibung]].
+
*This exercise belongs to the chapter  [[Channel_Coding/Algebraic_and_Polynomial_Description| "Algebraic and Polynomial Description"]].
*Bezug genommen wird insbesondere auf die Seite  [[Channel_Coding/Algebraische_und_polynomische_Beschreibung#Aufteilung_der_Generatormatrix_in_Teilmatrizen|Aufteilung der Generatormatrix in Teilmatrizen]].  
+
*Reference is made in particular to the page  [[Channel_Coding/Algebraic_and_Polynomial_Description#Division_of_the_generator_matrix_into_partial_matrices|"Division of the generator matrix into partial matrices"]].  
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Aus wievielen Teilmatrizen&nbsp; $\mathbf{G}_l$&nbsp; setzt sich die Matrix&nbsp; $\mathbf{G}$&nbsp; zusammen?
+
{From how many partial matrices&nbsp; $\mathbf{G}_l$&nbsp; is the matrix&nbsp; $\mathbf{G}$&nbsp; composed?
 
|type="{}"}
 
|type="{}"}
${\rm Anzahl \ der \ Teilmatrizen} \ = \ ${ 4 }
+
${\rm Number \ of \ partial \ matrices} \ = \ ${ 4 }
  
{Welche Dimension besitzen die Teilmatrizen&nbsp; $\mathbf{G}_l$?
+
{What dimension do the partial matrices&nbsp; $\mathbf{G}_l$ have?
 
|type="{}"}
 
|type="{}"}
${\rm Zeilenzahl \ der \ Teilmatrizen} \hspace{0.425cm} = \ ${ 1 }  
+
${\rm Rows \ of \ the \ partial \ matrices} \hspace{0.425cm} = \ ${ 1 }  
${\rm Spaltenzahl \ der \ Teilmatrizen} \ = \ ${ 3 }  
+
${\rm Columns \ of \ the \ partial \ matrices} \ = \ ${ 3 }  
  
{Welche Aussagen sind richtig?
+
{Which statements are correct?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; $\mathbf{G}_0 = (1, 1, 1)$.
+
+ It holds&nbsp; $\mathbf{G}_0 = (1, 1, 1)$.
+ Es gilt&nbsp; $\mathbf{G}_ 1 = (1, 1, 0)$.
+
+ It holds&nbsp; $\mathbf{G}_ 1 = (1, 1, 0)$.
+ Es gilt&nbsp; $\mathbf{G}_2 = (0, 1, 1)$.
+
+ It holds&nbsp; $\mathbf{G}_2 = (0, 1, 1)$.
+ Es gilt&nbsp; $\mathbf{G}_3 = (1, 1, 0)$.
+
+ It holds&nbsp; $\mathbf{G}_3 = (1, 1, 0)$.
  
{Erstellen Sie die Generatormatrix&nbsp; $\mathbf{G}$&nbsp; mit fünf Zeilen und fünfzehn Spalten. <br>Welche Codesequenz ergibt sich für&nbsp; $\underline{u} = (1, 0, 1, 1, 0)$?
+
{Create the generator matrix&nbsp; $\mathbf{G}$&nbsp; with five rows and fifteen columns. <br>What code sequence results for&nbsp; $\underline{u} = (1, 0, 1, 1, 0)$?
 
|type="()"}
 
|type="()"}
- Es gilt&nbsp; $\underline{x} = (1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, \text{...}).$
+
- It holds&nbsp; $\underline{x} = (1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, \text{...}).$
+ Es gilt&nbsp; $\underline{x} = (1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, \text{...}).$
+
+ It holds&nbsp; $\underline{x} = (1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, \text{...}).$
- Es gilt&nbsp; $\underline{x} = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, \text{...}).$
+
- It holds&nbsp; $\underline{x} = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, \text{...}).$
 
</quiz>
 
</quiz>
  
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Für den Index $l$ der Teilmatrizen gilt $0 &#8804; l &#8804; m$.  
+
'''(1)'''&nbsp; For the index $l$ of the partial matrices, $0 &#8804; l &#8804; m$.  
*Der betrachtete Coder hat das Gedächtnis $m = 3$.  
+
*The coder under consideration has memory $m = 3$.  
*Damit sind <u>vier Teilmatrizen</u> zu berücksichtigen.
+
*Thereby <u>four partial matrices</u> are to be considered.
  
  
  
'''(2)'''&nbsp; Jede Teilmatrix $\mathbf{G}_l$ besteht aus
+
'''(2)'''&nbsp; Each partial matrix $\mathbf{G}_l$ consists of.
*<u>einer Zeile</u> &nbsp;&#8658;&nbsp; $k = 1$, und
+
*<u>one row</u> &nbsp;&#8658;&nbsp; $k = 1$, and
*<u>drei Spalten</u> &nbsp;&#8658;&nbsp; $n = 3$.
+
*<u>three columns</u> &nbsp;&#8658;&nbsp; $n = 3$.
  
  
  
'''(3)'''&nbsp; <u>Alle Aussagen</u> sind richtig:  
+
'''(3)'''&nbsp; <u>All statements</u> are correct:  
*Da das aktuelle Informationsbit $u_i$ alle drei Ausgänge $x_i^{(1)}, \ x_i^{(2)}$ und $x_i^{(3)}$ beeinflusst, ist $\mathbf{G}_0 = (1, 1, 1)$.  
+
*Since the current information bit $u_i$ affects all three outputs $x_i^{(1)}, \ x_i^{(2)}$ and $x_i^{(3)}$, $\mathbf{G}_0 = (1, 1, 1)$.  
*Dagegen sagt $\mathbf{G}_3 = (1, 1, 0)$ aus, dass nur die beiden ersten Eingänge von $u_{i-3}$ beeinflusst werden, nicht aber $x_i^{(3)}$.
+
*In contrast, $\mathbf{G}_3 = (1, 1, 0)$ states that only the first two inputs are affected by $u_{i-3}$, but not $x_i^{(3)}$.
  
  
  
'''(4)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(4)'''&nbsp; Correct is the <u>proposed solution 2</u>:
[[File:P_ID2626__KC_Z_3_2d.png|right|frame|Generatormatrix $\mathbf{G}$]]
+
[[File:P_ID2626__KC_Z_3_2d.png|right|frame|Generator matrix $\mathbf{G}$]]
*Die gesuchte Generatormatrix $\mathbf{G}$ ist rechts dargestellt, wobei die vier Teilmatrizen $\mathbf{G}_0, \ ... , \mathbf{G}_3$ farblich unterschieden sind.  
+
*The searched generator matrix $\mathbf{G}$ is shown on the right, where the four partial matrices $\mathbf{G}_0, \ ... , \mathbf{G}_3$ are distinguished by color.  
*Die folgende  Vektorgleichung liefert das Ergebnis entsprechend dem zweiten Lösungsvorschlag 2:
+
*The following vector equation gives the result corresponding to the second proposed solution 2:
 
:$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1) \cdot { \boldsymbol{\rm G}}. $$
 
:$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1) \cdot { \boldsymbol{\rm G}}. $$
*Die Codesequenz $\underline{x}$ ist dabei gleich der Modulo&ndash;2&ndash;Summe der Matrixzeilen 1, 3 und 4.
+
*The code sequence $\underline{x}$ is thereby equal to the modulo 2 sum of the matrix rows 1, 3 and 4.
  
*Farblich unterschieden sind die drei Codesequenzen der einzelnen Zweige. Beispielsweise gilt für den unteren Ausgang:
+
*The three code sequences of the individual branches are distinguished by color. For example, the following applies to the lower output:
 
:$$\underline{x}^{(3)} =  (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm}) \hspace{0.05cm}.$$
 
:$$\underline{x}^{(3)} =  (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm}) \hspace{0.05cm}.$$
  
Anhand der vorne angegebenen Gleichungen kann dieses Resultat verifiziert werden:
+
Using the equations given above, this result can be verified:
 
:$${x}_1^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  u_1 + u_{-1} = 1+ (0) = 1 \hspace{0.05cm},$$
 
:$${x}_1^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  u_1 + u_{-1} = 1+ (0) = 1 \hspace{0.05cm},$$
 
:$${x}_2^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  u_2 + u_{0} = 0+ (0) = 0 \hspace{0.05cm},$$
 
:$${x}_2^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  u_2 + u_{0} = 0+ (0) = 0 \hspace{0.05cm},$$
Line 104: Line 104:
 
:$${x}_5^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  u_5 + u_{3} = 0+ 1 = 1 \hspace{0.05cm}.$$
 
:$${x}_5^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  u_5 + u_{3} = 0+ 1 = 1 \hspace{0.05cm}.$$
  
''Anmerkungen:''
+
Notes:  
*Berücksichtigt ist hierbei die Speichervorbelegung mit Nullen: $u_0 = u_{&ndash;1} = 0$.
+
*The memory preallocation with zeros is taken into account here: $u_0 = u_{&ndash;1} = 0$.
*Ist wie hier angenommen die Informationssequenz auf vier Bit begrenzt, so können in der Codesequenz Einsen bis zur Position $(4 + m) \cdot n = 21$ vorkommen.
+
*If, as assumed here, the information sequence is limited to four bits, then ones can occur in the code sequence up to the position $(4 + m) \cdot n = 21$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 19:46, 23 September 2022

Convolutional encoder with parameters  $k = 1, \ n = 3$ and $m = 3$.

The presented convolutional encoder is defined by the parameters 

  • $k = 1$  $($only one information sequence  $\underline{u})$  and 
  • $n = 3$  $($three code sequences $\underline{x}^{(1)}, \ \underline{x}^{(2)}, \ \underline{x}^{(3)})$ 


characterized. From the number of memory cells, the memory  $m = 3$.

With the information bit  $u_i$  to the coding step  $i$  the following code bits are obtained:

$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i} + u_{i-1} + u_{i-3}\hspace{0.05cm},$$
$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i} + u_{i-1} + u_{i-2} + u_{i-3} \hspace{0.05cm},$$
$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i} + u_{i-2} \hspace{0.05cm}.$$

From this, partial matrices  $\mathbf{G}_l$  can be derived, as described on the page  "Division of the generator matrix into partial matrices" .

  • For the generator matrix can thus be written:
$$ { \boldsymbol{\rm G}}=\begin{pmatrix} { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & & & \\ & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & &\\ & & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m &\\ & & & \ddots & \ddots & & & \ddots \end{pmatrix}\hspace{0.05cm}.$$
  • For the code sequence $\underline{x} = (x_1^{(1)}, \ x_1^{(2)}, \ x_1^{(3)}, \ x_2^{(1)}, \ x_2^{(2)}, \ x_2^{(3)}, \ \text{...})$ holds:
$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$




Hints:



Questions

1

From how many partial matrices  $\mathbf{G}_l$  is the matrix  $\mathbf{G}$  composed?

${\rm Number \ of \ partial \ matrices} \ = \ $

2

What dimension do the partial matrices  $\mathbf{G}_l$ have?

${\rm Rows \ of \ the \ partial \ matrices} \hspace{0.425cm} = \ $

${\rm Columns \ of \ the \ partial \ matrices} \ = \ $

3

Which statements are correct?

It holds  $\mathbf{G}_0 = (1, 1, 1)$.
It holds  $\mathbf{G}_ 1 = (1, 1, 0)$.
It holds  $\mathbf{G}_2 = (0, 1, 1)$.
It holds  $\mathbf{G}_3 = (1, 1, 0)$.

4

Create the generator matrix  $\mathbf{G}$  with five rows and fifteen columns.
What code sequence results for  $\underline{u} = (1, 0, 1, 1, 0)$?

It holds  $\underline{x} = (1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, \text{...}).$
It holds  $\underline{x} = (1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, \text{...}).$
It holds  $\underline{x} = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, \text{...}).$


Solution

(1)  For the index $l$ of the partial matrices, $0 ≤ l ≤ m$.

  • The coder under consideration has memory $m = 3$.
  • Thereby four partial matrices are to be considered.


(2)  Each partial matrix $\mathbf{G}_l$ consists of.

  • one row  ⇒  $k = 1$, and
  • three columns  ⇒  $n = 3$.


(3)  All statements are correct:

  • Since the current information bit $u_i$ affects all three outputs $x_i^{(1)}, \ x_i^{(2)}$ and $x_i^{(3)}$, $\mathbf{G}_0 = (1, 1, 1)$.
  • In contrast, $\mathbf{G}_3 = (1, 1, 0)$ states that only the first two inputs are affected by $u_{i-3}$, but not $x_i^{(3)}$.


(4)  Correct is the proposed solution 2:

Generator matrix $\mathbf{G}$
  • The searched generator matrix $\mathbf{G}$ is shown on the right, where the four partial matrices $\mathbf{G}_0, \ ... , \mathbf{G}_3$ are distinguished by color.
  • The following vector equation gives the result corresponding to the second proposed solution 2:
$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1) \cdot { \boldsymbol{\rm G}}. $$
  • The code sequence $\underline{x}$ is thereby equal to the modulo 2 sum of the matrix rows 1, 3 and 4.
  • The three code sequences of the individual branches are distinguished by color. For example, the following applies to the lower output:
$$\underline{x}^{(3)} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm}) \hspace{0.05cm}.$$

Using the equations given above, this result can be verified:

$${x}_1^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_1 + u_{-1} = 1+ (0) = 1 \hspace{0.05cm},$$
$${x}_2^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_2 + u_{0} = 0+ (0) = 0 \hspace{0.05cm},$$
$${x}_3^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_3 + u_{1} = 1+1 = 0 \hspace{0.05cm},$$
$${x}_4^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_4 + u_{2} = 1+0 = 1 \hspace{0.05cm},$$
$${x}_5^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_5 + u_{3} = 0+ 1 = 1 \hspace{0.05cm}.$$

Notes:

  • The memory preallocation with zeros is taken into account here: $u_0 = u_{–1} = 0$.
  • If, as assumed here, the information sequence is limited to four bits, then ones can occur in the code sequence up to the position $(4 + m) \cdot n = 21$.