Difference between revisions of "Aufgaben:Exercise 3.2Z: Bessel Spectrum"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
m
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Phasenmodulation (PM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM)
 
}}
 
}}
  
[[File:P_ID1083__Mod_Z_3_2.png|right|frame|Verlauf der Besselfunktionen]]
+
[[File:P_ID1083__Mod_Z_3_2.png|right|frame|Progression of Bessel functions]]
Wir betrachten das komplexe Signal
+
Consider the complex signal
 
:$$x(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t) }\hspace{0.05cm}.$$
 
:$$x(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t) }\hspace{0.05cm}.$$
Beispielsweise kann man das äquivalente Tiefpass–Signal am Ausgang eines Winkelmodulators (PM, FM) in dieser Form darstellen, wenn man geeignete Normierungen vornimmt.
+
For example, the equivalent low-pass signal at the output of an angle modulator (PM, FM) can be represented in this form if appropriate normalizations are made.
  
Die Fourierreihendarstellung lautet mit $T_0 = 2π/ω_0$:
+
*When  $T_0 = 2π/ω_0$, the Fourier series representation is:
 
:$$x(t)  =  \sum_{n = - \infty}^{+\infty}D_n \cdot{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t }\hspace{0.05cm},$$  
 
:$$x(t)  =  \sum_{n = - \infty}^{+\infty}D_n \cdot{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t }\hspace{0.05cm},$$  
 
:$$ D_n  =  \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}x(t) \cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
 
:$$ D_n  =  \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}x(t) \cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
Diese komplexen Fourierkoeffizienten können mit Hilfe der Besselfunktionen erster Art und n–ter Ordnung ausgedrückt werden:
+
*These complex Fourier coefficients can be expressed using $n$–th order Bessel functions of the first kind:
 
:$${\rm J}_n (\eta) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
 
:$${\rm J}_n (\eta) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
Diese sind in der Grafik im Bereich $0 ≤ η ≤ 5$ dargestellt. Für negative Werte von $n$ erhält man:
+
*These are shown on the graph in the range  $0 ≤ η ≤ 5$ . For negative values of $n$  one obtains:
 
:$${\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)\hspace{0.05cm}.$$
 
:$${\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)\hspace{0.05cm}.$$
Die Reihendarstellung der Besselfunktionen lautet:
+
*The series representation of the Bessel functions is:
 
:$${\rm J}_n (\eta) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (\eta/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$
 
:$${\rm J}_n (\eta) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (\eta/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$
Sind die Funktionswerte für $n = 0$ und $n = 1$ bekannt, so können daraus die Besselfunktionen für $n ≥ 2$ iterativ ermittelt werden:
+
*If the function values for  $n = 0$  and  $n = 1$  are known, the Bessel functions for  $n ≥ 2$  can be determined from them by iteration:
 
:$${\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.05cm}.$$
 
:$${\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.05cm}.$$
  
  
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]].
+
 
*Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Phasenmodulation_(PM)#.C3.84quivalentes_TP.E2.80.93Signal_bei_Phasenmodulation|Äquivalentes Tiefpass-Signal bei Phasenmodulation]].
+
 
*Die Werte der Besselfunktionen findet man in Formelsammlungen  in tabellarischer Form.  
+
 
*Sie können zur Lösung dieser Aufgabe auch das Interaktionsmodul [[Werte der Besselfunktion erster Art und n–ter Ordnung]] nutzen.
+
 
 +
 
 +
''Hints:''  
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
 +
*Particular reference is made to the page  [[Modulation_Methods/Phase_Modulation_(PM)#Equivalent_low-pass_signal_in_phase_modulation|Equivalent low-pass signal in phase modulation]].
 +
*The values of the Bessel functions can be found in collections of formulae in table form.
 +
*You can also use the interactive applet   [[Applets:Bessel_functions_of_the_first_kind| Bessel functions of the first kind]]  to solve this task.
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welche Eigenschaften besitzt das Signal $x(t)$?
+
{What are the properties of the signal &nbsp;$x(t)$?
 
|type="[]"}
 
|type="[]"}
- $x(t)$ ist für alle Zeiten $t$ imaginär.
+
- $x(t)$&nbsp; is imaginary for all times &nbsp;$t$&nbsp;.
+ $x(t)$ ist periodisch.
+
+ $x(t)$&nbsp; is periodic.
- Die Spektralfunktion $X(f)$ erhält man über das Fourierintegral.
+
- The spectral function&nbsp;$X(f)$&nbsp; is obtained via the Fourier integral.
  
{Schreiben Sie die Fourierkoeffizienten $D_n$ mit den Besselfunktionen erster Art &nbsp; &rArr; &nbsp; ${\rm J}_n(η)$.  
+
{Write the Fourier coefficients &nbsp;$D_n$&nbsp; together with the Bessel functions of the first kind &nbsp; &rArr; &nbsp; ${\rm J}_n(η)$.&nbsp; What relationships can be seen?
<br>Welche Zusammenhänge sind zu erkennen?
 
 
|type="[]"}
 
|type="[]"}
- Alle $D_n$ sind gleich ${\rm J}_η(0)$.
+
- All &nbsp;$D_n$&nbsp; are equal to &nbsp;${\rm J}_η(0)$.
+ Es gilt $D_n = {\rm J}_n(η)$.
+
+ &nbsp;$D_n = {\rm J}_n(η)$ holds.
- Es gilt $D_n = -{\rm J}_η(n)$.
+
- &nbsp;$D_n = -{\rm J}_η(n)$ holds.
  
{ Welche Eigenschaften besitzen die Fourierkoeffizienten?
+
{ What are the properties of the Fourier coefficients?
|type="[]"}
+
|type="()"}
Alle $D_n$ sind rein reell.
+
All&nbsp; $D_n$&nbsp; are purely real.
Alle $D_n$ sind rein imaginär.
+
All&nbsp; $D_n$&nbsp; are purely imaginary.
  
{Für $η = 2$ lauten die Koeffizienten $D_0 = 0.224$ und $D_1 = 0.577$. Berechnen Sie hieraus die Koeffizienten $D_2$ und $D_3$.
+
{For &nbsp;$η = 2$&nbsp;, the coefficients are &nbsp;$D_0 = 0.224$&nbsp; and &nbsp;$D_1 = 0.577$.&nbsp; From this, calculate the coefficients &nbsp;$D_2$&nbsp; and &nbsp;$D_3$.
 
|type="{}"}
 
|type="{}"}
 
$D_2 \ = \ $ { 0.353 3% }  
 
$D_2 \ = \ $ { 0.353 3% }  
 
$D_3 \ = \ $ { 0.129 3% }  
 
$D_3 \ = \ $ { 0.129 3% }  
  
{Wie lauten die Fourierkoeffizienten $D_{-2}$ und $D_{-3}$ ?
+
{What are the Fourier coefficients &nbsp;$D_{-2}$&nbsp; and &nbsp;$D_{-3}$ ?
 
|type="{}"}
 
|type="{}"}
 
$D_{-2} \ = \ $ { 0.353 3% }  
 
$D_{-2} \ = \ $ { 0.353 3% }  
Line 65: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist nur der <u>zweite Lösungsvorschlag</u>:
+
'''(1)'''&nbsp; Only the <u>second answer</u> is correct:
*$x(t)$ ist ein komplexes Signal, das nur in Ausnahmefällen reell wird, zum Beispiel zur Zeit $t = 0$. Ein rein imaginärer Wert (zu gewissen Zeiten) kann sich nur dann ergeben, wenn $η ≥ π/2$ ist &rArr; &nbsp;  Antwort 1 ist falsch.
+
*$x(t)$&nbsp; is a complex signal that only becomes real in exceptional cases, for example at time &nbsp; $t = 0$.  
*Mit $T_0 = 2π/ω_0$ gilt beispielsweise:
+
*A purely imaginary value (at certain times) can only result when $η ≥ π/2$&nbsp; &nbsp; &rArr; &nbsp;  Answer 1 is incorrect.
 +
*For example, when&nbsp; $T_0 = 2π/ω_0$&nbsp;:
 
:$$ x(t + k \cdot T_0)  =  {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} (t \hspace{0.05cm}+ \hspace{0.05cm} k \hspace{0.05cm}\cdot \hspace{0.05cm}T_0)) } =
 
:$$ x(t + k \cdot T_0)  =  {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} (t \hspace{0.05cm}+ \hspace{0.05cm} k \hspace{0.05cm}\cdot \hspace{0.05cm}T_0)) } =
 
   {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm} + \hspace{0.05cm} k \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi) } ={\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm} ) } = x(t)\hspace{0.05cm}.$$
 
   {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm} + \hspace{0.05cm} k \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi) } ={\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm} ) } = x(t)\hspace{0.05cm}.$$
*Dieses Signal ist periodisch. Zur Berechnung der Spektralfunktion muss die Fourierreihe und nicht das Fourierintegral herangezogen werden.  
+
*This signal is periodic.&nbsp; The Fourier series, not the Fourier integral, must be used to calculate the spectral function.
  
  
'''(2)'''&nbsp; Die Fourierkoeffizienten lauten:
+
 
 +
'''(2)'''&nbsp; The Fourier coefficients are:
 
:$$ D_n = \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t) }\cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
 
:$$ D_n = \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t) }\cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
Durch Zusammenfassen der beiden Terme und nach der Substitution $α = ω_0 · t$ erhält man:
+
*Combining the two terms and after substituting &nbsp; $α = ω_0 · t$&nbsp;, we get:
 
:$$D_n = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm} = {\rm J}_n (\eta) .$$
 
:$$D_n = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm} = {\rm J}_n (\eta) .$$
Richtig ist also der <u>zweite Lösungsvorschlag</u>.
+
*Thus, the <u>second answer</u> is correct.
  
  
'''(3)'''&nbsp; Mit dem Satz von Euler können die Fourierkoeffizienten wie folgt dargestellt werden:
+
 
 +
'''(3)'''&nbsp; Using Euler's theorem, the Fourier coefficients can be represented as follows:
 
:$$D_n  =  \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha +  
 
:$$D_n  =  \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha +  
 
\frac{\rm  j}{2\pi}\cdot \int_{-\pi}^{+\pi} {\sin( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
 
\frac{\rm  j}{2\pi}\cdot \int_{-\pi}^{+\pi} {\sin( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
Der Integrand des ersten Integrals ist eine gerade Funktion von α:
+
*The integrand of the first integral is an even function of&nbsp; $\alpha$:
 
:$$I_1 (-\alpha)  =  {\cos( \eta \cdot \sin(-\alpha) + n \cdot \alpha)} = {\cos( -\eta \cdot \sin(\alpha) + n \cdot \alpha)}=
 
:$$I_1 (-\alpha)  =  {\cos( \eta \cdot \sin(-\alpha) + n \cdot \alpha)} = {\cos( -\eta \cdot \sin(\alpha) + n \cdot \alpha)}=
 
   {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)} = I_1 (\alpha) \hspace{0.05cm}.$$
 
   {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)} = I_1 (\alpha) \hspace{0.05cm}.$$
Dagegen ist der zweite Integrand eine ungerade Funktion:
+
*In contrast, the second integrand is an odd function:
 
:$$I_2 (-\alpha)  =  {\sin( \eta \cdot \sin(-\alpha) + n \cdot \alpha)} = {\sin( -\eta \cdot \sin(\alpha) + n \cdot \alpha)}=
 
:$$I_2 (-\alpha)  =  {\sin( \eta \cdot \sin(-\alpha) + n \cdot \alpha)} = {\sin( -\eta \cdot \sin(\alpha) + n \cdot \alpha)}=
 
   -{\sin( \eta \cdot \sin(\alpha) - n \cdot \alpha)} = -I_2 (\alpha) \hspace{0.05cm}.$$
 
   -{\sin( \eta \cdot \sin(\alpha) - n \cdot \alpha)} = -I_2 (\alpha) \hspace{0.05cm}.$$
Somit verschwindet das zweite Integral und man erhält unter Berücksichtigung der Symmetrie:
+
*Thus, the second integral vanishes and, taking symmetry into account, we obtain:
 
:$$D_n = \frac{1}{\pi}\cdot \int_{0}^{\pi} {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
 
:$$D_n = \frac{1}{\pi}\cdot \int_{0}^{\pi} {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
Richtig ist somit der <u>Lösungsvorschlag 1</u>.
+
*Thus, the correct solution is <u>Answer 1</u>.
 +
 
  
  
'''(4)'''&nbsp; Entsprechend der iterativen Berechnungsformel gilt für $η = 2$:
+
'''(4)'''&nbsp; According to the formula for iterative calculation, when&nbsp; $η = 2$:
 
:$$ D_2  =  D_1 - D_0 = 0.577 - 0.224 \hspace{0.15cm}\underline {= 0.353} \hspace{0.05cm},$$   
 
:$$ D_2  =  D_1 - D_0 = 0.577 - 0.224 \hspace{0.15cm}\underline {= 0.353} \hspace{0.05cm},$$   
 
:$$D_3  =  2 \cdot D_2 - D_1 = 2 \cdot 0.353 - 0.577 \hspace{0.15cm}\underline {= 0.129} \hspace{0.05cm}.$$
 
:$$D_3  =  2 \cdot D_2 - D_1 = 2 \cdot 0.353 - 0.577 \hspace{0.15cm}\underline {= 0.129} \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Aufgrund der angegebenen Symmetriebeziehung gilt weiter:
+
'''(5)'''&nbsp; Due to the given symmetry relation, it further holds that:
:$$ D{–2} = D_2\hspace{0.15cm}\underline {= 0.353} \hspace{0.05cm},$$   
+
:$$ D_{–2} = D_2\hspace{0.15cm}\underline {= 0.353} \hspace{0.05cm},$$   
:$$D{–3} = D_3  \hspace{0.15cm}\underline {= -0.129} \hspace{0.05cm}.$$
+
:$$D_{–3} = -D_3  \hspace{0.15cm}\underline {= -0.129} \hspace{0.05cm}.$$
  
  
Line 110: Line 119:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.1 Phasenmodulation (PM)^]]
+
[[Category:Modulation Methods: Exercises|^3.1 Phase Modulation^]]

Latest revision as of 16:51, 9 April 2022

Progression of Bessel functions

Consider the complex signal

$$x(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t) }\hspace{0.05cm}.$$

For example, the equivalent low-pass signal at the output of an angle modulator (PM, FM) can be represented in this form if appropriate normalizations are made.

  • When  $T_0 = 2π/ω_0$, the Fourier series representation is:
$$x(t) = \sum_{n = - \infty}^{+\infty}D_n \cdot{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t }\hspace{0.05cm},$$
$$ D_n = \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}x(t) \cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
  • These complex Fourier coefficients can be expressed using $n$–th order Bessel functions of the first kind:
$${\rm J}_n (\eta) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
  • These are shown on the graph in the range  $0 ≤ η ≤ 5$ . For negative values of $n$  one obtains:
$${\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)\hspace{0.05cm}.$$
  • The series representation of the Bessel functions is:
$${\rm J}_n (\eta) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (\eta/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$
  • If the function values for  $n = 0$  and  $n = 1$  are known, the Bessel functions for  $n ≥ 2$  can be determined from them by iteration:
$${\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.05cm}.$$





Hints:


Questions

1

What are the properties of the signal  $x(t)$?

$x(t)$  is imaginary for all times  $t$ .
$x(t)$  is periodic.
The spectral function $X(f)$  is obtained via the Fourier integral.

2

Write the Fourier coefficients  $D_n$  together with the Bessel functions of the first kind   ⇒   ${\rm J}_n(η)$.  What relationships can be seen?

All  $D_n$  are equal to  ${\rm J}_η(0)$.
 $D_n = {\rm J}_n(η)$ holds.
 $D_n = -{\rm J}_η(n)$ holds.

3

What are the properties of the Fourier coefficients?

All  $D_n$  are purely real.
All  $D_n$  are purely imaginary.

4

For  $η = 2$ , the coefficients are  $D_0 = 0.224$  and  $D_1 = 0.577$.  From this, calculate the coefficients  $D_2$  and  $D_3$.

$D_2 \ = \ $

$D_3 \ = \ $

5

What are the Fourier coefficients  $D_{-2}$  and  $D_{-3}$ ?

$D_{-2} \ = \ $

$D_{-3} \ = \ $


Solution

(1)  Only the second answer is correct:

  • $x(t)$  is a complex signal that only becomes real in exceptional cases, for example at time   $t = 0$.
  • A purely imaginary value (at certain times) can only result when $η ≥ π/2$    ⇒   Answer 1 is incorrect.
  • For example, when  $T_0 = 2π/ω_0$ :
$$ x(t + k \cdot T_0) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} (t \hspace{0.05cm}+ \hspace{0.05cm} k \hspace{0.05cm}\cdot \hspace{0.05cm}T_0)) } = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm} + \hspace{0.05cm} k \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi) } ={\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm} ) } = x(t)\hspace{0.05cm}.$$
  • This signal is periodic.  The Fourier series, not the Fourier integral, must be used to calculate the spectral function.


(2)  The Fourier coefficients are:

$$ D_n = \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t) }\cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
  • Combining the two terms and after substituting   $α = ω_0 · t$ , we get:
$$D_n = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm} = {\rm J}_n (\eta) .$$
  • Thus, the second answer is correct.


(3)  Using Euler's theorem, the Fourier coefficients can be represented as follows:

$$D_n = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha + \frac{\rm j}{2\pi}\cdot \int_{-\pi}^{+\pi} {\sin( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
  • The integrand of the first integral is an even function of  $\alpha$:
$$I_1 (-\alpha) = {\cos( \eta \cdot \sin(-\alpha) + n \cdot \alpha)} = {\cos( -\eta \cdot \sin(\alpha) + n \cdot \alpha)}= {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)} = I_1 (\alpha) \hspace{0.05cm}.$$
  • In contrast, the second integrand is an odd function:
$$I_2 (-\alpha) = {\sin( \eta \cdot \sin(-\alpha) + n \cdot \alpha)} = {\sin( -\eta \cdot \sin(\alpha) + n \cdot \alpha)}= -{\sin( \eta \cdot \sin(\alpha) - n \cdot \alpha)} = -I_2 (\alpha) \hspace{0.05cm}.$$
  • Thus, the second integral vanishes and, taking symmetry into account, we obtain:
$$D_n = \frac{1}{\pi}\cdot \int_{0}^{\pi} {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
  • Thus, the correct solution is Answer 1.


(4)  According to the formula for iterative calculation, when  $η = 2$:

$$ D_2 = D_1 - D_0 = 0.577 - 0.224 \hspace{0.15cm}\underline {= 0.353} \hspace{0.05cm},$$
$$D_3 = 2 \cdot D_2 - D_1 = 2 \cdot 0.353 - 0.577 \hspace{0.15cm}\underline {= 0.129} \hspace{0.05cm}.$$


(5)  Due to the given symmetry relation, it further holds that:

$$ D_{–2} = D_2\hspace{0.15cm}\underline {= 0.353} \hspace{0.05cm},$$
$$D_{–3} = -D_3 \hspace{0.15cm}\underline {= -0.129} \hspace{0.05cm}.$$