Difference between revisions of "Aufgaben:Exercise 3.3: From the Signal to the Spectrum"

From LNTwww
 
(37 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=*Buch*/*Kapitel*
+
{{quiz-Header|Buchseite=Signal_Representation/Special_Cases_of_Impulse_Signals
 
}}
 
}}
  
[[File:P_ID503__Sig_A_3_3.png|250px|right|Rechteckimpuls und Spektrum (Aufgabe A3.3)]]
+
[[File:EN_Sig_A_3_3.png|250px|right|frame|Rectangular pulse and its spectrum]]
  
Betrachtet wird ein Rechteckimpuls $x(t)$ der Dauer $T = 50$ µs und der Höhe $A = 2$ V. An den Sprungstellen bei $t = 0$ und $t = T$ ist der Signalwert jeweils $A/2$, was aber für die Lösung der Aufgabe keinen Einfluss hat.
+
A rectangular pulse  $x(t)$  with duration  $T = 50\,\text{µs}$  and  height  $A = 2\,\text{V}$ is considered.  At the jumping points at  $t = 0$  and  $t = T$  the signal value is  $A/2$  in each case, but this has no influence on the solution of the task.
In der unteren Grafik ist die dazugehörige Spektralfunktion nach Betrag und Phase qualitativ skizziert. Es gilt:
 
  
$$X( f ) = \left| {X( f )} \right| \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \varphi ( f )} .$$
+
In the lower graph, the corresponding spectral function is sketched qualitatively according to magnitude and phase.  It is valid:
 +
 
 +
:$$X( f ) = \left| {X( f )} \right| \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \varphi ( f )} .$$
 
   
 
   
Der analytische Funktionsverlauf von $X(f)$ soll ermittelt werden.
+
The analytical function progression of  $X(f)$  is to be determined.
Hinweis: Diese Übungsaufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 3.1 und Kapitel 3.2. Gegeben sind weiterhin folgende trigonometrischen Umformungen:
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This task belongs to the chapter   [[Signal_Representation/Special_Cases_of_Pulses|Special Cases of Pulses]].
 +
*Use one of the functions  $\text{si}(x) = \sin(x)/x$  or  $\text{sinc}(x) = \sin(\pi x)/(\pi x)$.  
 +
*The following trigonometric transformations are given:
 +
 
 +
:$$\sin ^2( \alpha ) = {1}/{2} \cdot \big( {1 - \cos ( {2\alpha } )} \big),\hspace{0.5cm} \tan( {\alpha /2} ) = \frac{ {1 - \cos ( \alpha  )}}{ {\sin ( \alpha  )}}.$$
  
$$\sin ^2( \alpha ) = {1}/{2} \cdot \left( {1 - \cos ( {2\alpha } )} \right),$$
 
  
$$\tan( {\alpha /2} ) = \frac{ {1 - \cos ( \alpha  )}}{ {\sin ( \alpha  )}}.$$
 
 
   
 
   
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie allgemein die Spektralfunktion $X(f)$. Welcher Wert ergibt sich bei der Frequenz $f = 10$ kHz?
+
{Calculate the spectral function&nbsp; $X(f)$&nbsp; in general.&nbsp; What value results at the frequency&nbsp; $f=10\, \text{kHz}$?
 
|type="{}"}
 
|type="{}"}
$Re[X(f=10 \text{kHz})] =$ { 5 5% } mV/Hz
+
${\rm Re}\big[X(f=10 \,\text{kHz})\big] \ = \ $ { 0. } &nbsp; $\text{mV/Hz}$
$Im[X(f=10 \text{kHz})] =$ { - 0.0637 5% } mV/Hz
+
${\rm Im}\big[X(f=10\, \text{kHz})\big]\ = \ $ { -0.064--0.06 } &nbsp; $\text{mV/Hz}$
  
{Berechnen Sie die Betragsfunktion $|X(f)|$ allgemein. Welche Werte ergeben sich für die Frequenzen $f = 0$ und $f = 20$ kHz?
+
{Calculate the magnitude function&nbsp; $|X(f)|$&nbsp; in general.&nbsp; What values result for the frequencies&nbsp; $f = 0$&nbsp; and&nbsp; $f=20 \,\text{kHz}$?
 
|type="{}"}
 
|type="{}"}
$|X(f=0)| =$ { 0.1 3% } mV/Hz
+
$|X(f=0)|\ = \ $ { 0.1 3% } &nbsp; $\text{mV/Hz}$
$|X(f= 20 \text{kHz})| =$ { 00 } mV/Hz
+
$|X(f=20\, \text{kHz})|\ = \ $ { 0. } &nbsp; $\text{mV/Hz}$
  
{Welche der nachfolgenden Aussagen sind bezüglich $|X(f)|$ zutreffend?
+
{Which of the following statements are true regarding&nbsp; $|X(f)|$?
 
|type="[]"}
 
|type="[]"}
+ $|X(f)|$ hat Nullstellen bei Vielfachen von $f_0 = 1/T$.
+
+ $|X(f)|$&nbsp; has zeros at multiples of&nbsp; $f_0 = 1/T$.
- $|X(f)|$ hat Nullstellen bei Vielfachen von $f_0 = 1/(2T)$.
+
- $|X(f)|$&nbsp; has zeros at multiples of&nbsp; $f_0 = 1/(2T)$.
+ In der Mitte zwischen zwei Nullstellen ist $|X(f)| = |A/(\pi f)|$.
+
+ In the middle between two zeros&nbsp; $|X(f)| = |A/(\pi f)|$ is true.
  
{Berechnen Sie die Phasenfunktion $\phi (f)$. Welcher Phasenwinkel (in Grad) ergibt sich bei der Frequenz $f = 10$ kHz?
+
{Calculate the phase function&nbsp; $\varphi (f)$.&nbsp; What phase angle (in degrees) results at the frequency&nbsp; $f=10\, \text{kHz}$?
 
|type="{}"}
 
|type="{}"}
$\phi (f = 10 \text{kHz}) =$ { 90 } Grad
+
$\varphi (f=10\, \text{kHz})\ = \ $ { 90 1% } &nbsp; $\text{deg}$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Mit der Abkürzung $\omega = 2\pi f$ lautet die Spektralfunktion gemäß dem ersten Fourierintegral:
+
'''(1)'''&nbsp; With the abbreviation&nbsp; $\omega = 2\pi f$&nbsp; the spectral function is according to the first Fourier integral:
 
   
 
   
$$X( f ) = \int_0^T {A \cdot {\rm{e}}^{-{\rm{j}}\omega t} \hspace{0.05cm}{\rm d}t = } \int_0^T {A \cdot \cos \left( {\omega t} \right)\hspace{0.05cm}{\rm d}t  }\hspace{0.1cm}-\hspace{0.1cm} {\rm{j}} \cdot \int_{\rm{0}}^T {A \cdot \sin ( {\omega t} )} \hspace{0.05cm}{\rm d}t.$$
+
:$$X( f ) = \int_0^T {A \cdot {\rm{e}}^{-{\rm{j}}\omega t} \hspace{0.05cm}{\rm d}t = } \int_0^T {A \cdot \cos \left( {\omega t} \right)\hspace{0.05cm}{\rm d}t  }\hspace{0.1cm}-\hspace{0.1cm} {\rm{j}} \cdot \int_{\rm{0}}^T {A \cdot \sin ( {\omega t} )} \hspace{0.05cm}{\rm d}t.$$
  
Nach Integration und Einsetzen der Grenzen folgt daraus:
+
*After integration and insertion of the limits, it follows:
 
   
 
   
$${\mathop{\rm Re}\nolimits} [ {X( f )} ] = \frac{A}{\omega } \cdot \sin( {\omega T} ),$$
+
:$${\mathop{\rm Re}\nolimits} [ {X( f )} ] = \frac{A}{\omega } \cdot \sin( {\omega T} ),$$
  
$${\mathop{\rm Im}\nolimits} [ {X( f)} ] = \frac{A}{\omega } \cdot \left( {\cos ( {\omega T}) - 1} \right) =  - \frac{A}{\omega }\left( {1 - \cos ( {\omega T} )} \right).$$
+
:$${\mathop{\rm Im}\nolimits} [ {X( f)} ] = \frac{A}{\omega } \cdot \left( {\cos ( {\omega T}) - 1} \right) =  - \frac{A}{\omega } \cdot\left( {1 - \cos ( {\omega T} )} \right).$$
 
   
 
   
Für die Frequenz $f = 1/(2T) = 10$ kHz (also $\omega \cdot T = \pi$ ) erhält man:
+
*For the frequency&nbsp; $f = 1/(2T) = 10\, \text{kHz}$ &nbsp; &rArr; &nbsp;  $\omega \cdot T = \pi$&nbsp;  we get:
 
   
 
   
$${\mathop{\rm Re}\nolimits}[{X( {f = 10 \;{\rm{kHz}}} )}] = \frac{A}{ {2{\rm{\pi }}f}} \cdot \sin ( {\rm{\pi }} ) \hspace{0.15 cm}\underline{= 0},$$
+
:$${\mathop{\rm Re}\nolimits}[{X( {f = 10 \;{\rm{kHz}}} )}] = \frac{A}{ {2{\rm{\pi }}f}} \cdot \sin ( {\rm{\pi }} ) \hspace{0.15 cm}\underline{= 0},$$
 +
 
 +
:$${\mathop{\rm Im}\nolimits} [ {X( {f = 10 \;{\rm{kHz}}})} ] = \frac{ { - A}}{ {2{\rm{\pi }}f}} \cdot \big( {1 - \cos ( {\rm{\pi }} )} \big) = - \frac{ {  A}}{{ {\rm{\pi }}f}}\hspace{0.15 cm}\underline{=  - 0.0637  \;{\rm{mV/Hz}}}{\rm{.}}$$
  
$${\mathop{\rm Im}\nolimits} [ {X( {f = 10 \;{\rm{kHz}}})} ] = \frac{ { - A}}{ {2{\rm{\pi }}f}} \cdot \left( {1 - \cos ( {\rm{\pi }} )} \right) = - \frac{ {  A}}{{ {\rm{\pi }}f}}\hspace{0.15 cm}\underline{=  - 6.37 \cdot 10^{ - 5} \;{\rm{V/Hz}}}{\rm{.}}$$
 
 
   
 
   
'''2.''' Das Betragsquadrat ist die Summe von Real- und Imaginärteil, jeweils quadriert:
+
'''(2)'''&nbsp; The magnitude square is the sum of the real and imaginary parts, squared in each case:
 
   
 
   
$$\left| {X( f )} \right|^2  = \frac{ {A^2 }}{ {\omega ^2 }}\left[ {\sin ^2 ( {\omega T} ) + 1 - 2 \cdot \cos ( {\omega T}) + \cos ^2 ( {\omega T} )} \right].$$
+
:$$\left| {X( f )} \right|^2  = \frac{ {A^2 }}{ {\omega ^2 }}\big[ {\sin ^2 ( {\omega T} ) + 1 - 2 \cdot \cos ( {\omega T}) + \cos ^2 ( {\omega T} )} \big].$$
  
Wegen $\sin^2(\alpha) + \cos^2(\alpha) = 1$ kann hierfür auch geschrieben werden:
+
*Because of&nbsp; $\sin^2(\alpha) + \cos^2(\alpha) = 1$&nbsp;, this can also be written:
 
   
 
   
$$\left| {X( f )} \right|^2  = \frac{ {2A^2 }}{ {\omega ^2 }}\left( {1 - \cos ( {\omega T} )} \right) = \frac{ {4A^2 }}{ {\omega ^2 }} \cdot \sin ^2( {\omega T/2} ).$$
+
:$$\left| {X( f )} \right|^2  = \frac{ {2A^2 }}{ {\omega ^2 }} \cdot \big( {1 - \cos ( {\omega T} )} \big) = \frac{ {4A^2 }}{ {\omega ^2 }} \cdot \sin ^2( {\omega T/2} ).$$
  
Setzt man für $\omega = 2\pi f$ und zieht die Wurzel, so erhält man unter der Voraussetzung $A > 0$:
+
*Setting &nbsp; $\omega = 2\pi f$&nbsp; and taking the root, we obtain, under the condition&nbsp; $A > 0$:
 
   
 
   
$$\left| {X( f )} \right| =  \left| \frac{A}{ {\rm\pi }f} \cdot \sin ( {\rm \pi }fT ) \right| = A \cdot T \cdot \left| \frac{\sin ( {\rm\pi }fT )}{ {\rm \pi}fT} \right|.$$
+
:$$\left| {X( f )} \right| =  \left| \frac{A}{ {\rm\pi }f} \cdot \sin ( {\rm \pi }fT ) \right| = A \cdot T \cdot \left| \frac{\sin ( {\rm\pi }fT )}{ {\rm \pi}fT} \right|.$$
  
Mit der Abkürzung $\text{si}(x) = \sin(x)/x$ lautet das Ergebnis:
+
*With the shortcuts&nbsp; $\text{si}(x) = \sin(x)/x$&nbsp; or&nbsp; $\text{sinc}(x) = \sin(\pi x)/(\pi x)$&nbsp; the results are:
 
   
 
   
$$\left| {X( f)} \right| = A \cdot T \cdot\left|{\rm si} ( { {\rm{\pi }}fT} ) \right|.$$
+
:$$\left| {X( f)} \right| = A \cdot T \cdot\left|{\rm si} ( { {\rm{\pi }}fT} ) \right|,$$
 +
:$$\left| {X( f)} \right| = A \cdot T \cdot\left|{\rm sinc} ( fT ) \right|.$$
  
Der Spektralwert bei der Frequenz $f = 1/T = 20$ kHz ergibt sich zu
+
*The spectral value at the frequency&nbsp; $f = 1/T = \text{20 kHz}$&nbsp; is given by
 
   
 
   
$$\left| {X( {f = 20\;{\rm{kHz}}} )} \right| = \frac{ {A \cdot T}}{ {\rm{\pi }}} \cdot \sin ( {\rm{\pi }} ) \hspace{0.15 cm}\underline{= 0}.$$
+
:$$\left| {X( {f = 20\;{\rm{kHz}}} )} \right| = \frac{ {A \cdot T}}{ {\rm{\pi }}} \cdot \sin ( {\rm{\pi }} ) \hspace{0.15 cm}\underline{= 0}.$$
  
Bei der Berechnung des Spektralwertes für $f = 0$ erscheint der Quotient „0 durch 0”. Durch Anwendung der Regel von l'Hospital kann dieser Grenzwert berechnet werden:
+
*When calculating the value for&nbsp; $f = 0$&nbsp; the quotient is&nbsp; $\text{"0 divided by 0"}$.&nbsp; By applying&nbsp; [https://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule L'Hospitals rule]&nbsp; the limiting value can be calculated:
 
   
 
   
$$\mathop {\lim }\limits_{x \to 0 } \frac{ {\sin \left( x \right)}}{x} = 1.$$
+
:$$\mathop {\lim }\limits_{x \to 0 } \frac{ {\sin \left( x \right)}}{x} = 1.$$
  
Daraus folgt:
+
*From this follows:
 
   
 
   
$$\left| {X( {f = 0} )} \right| = A \cdot T \hspace{0.15 cm}\underline{= 10^{ - 4} \;{\rm{V/Hz}}}{\rm{.}}$$
+
:$$\left| {X( {f = 0} )} \right| = A \cdot T \hspace{0.15 cm}\underline{= 0.1 \;{\rm{mV/Hz}}}{\rm{.}}$$
 +
 
 +
*This result is obvious because, according to the first Fourier integral, the spectral value at&nbsp; $f = 0$&nbsp; corresponds exactly to the area under the time function.
  
Dieses Ergebnis ist einsichtig, da nach dem ersten Fourierintegral der Spektralwert bei $f = 0$ genau der Fläche unter der Zeitfunktion entspricht.
 
  
[[File:P_ID563__Sig_A_3_3_c.png|250px|right|Betragsspektrum des Rechteckimpulses (ML zu Aufgabe A3.3)]]
 
  
'''3.''' Entsprechend dem Ergebnis 2.) treten die Nullstellen im Abstand $f_0 = 1/T$ auf. Bei $f_0 = 1/(2T) = 10$ kHz ist zwar der Realteil 0, aber nicht der Imaginärteil.
+
[[File:P_ID563__Sig_A_3_3_c.png|right|frame|Magnitude spectrum of the rectangular pulse]]
Bei den Argumenten $f \cdot T$ = 0.5, 1.5, 2.5, ... ist die Sinusfunktion jeweils betragsmäßig gleich 1, und es gilt:
+
'''(3)'''&nbsp; The <u>proposed  solutions 1 and 3</u> are correct:
 +
*According to the result of subtask&nbsp; '''(2)'''&nbsp; the zeros occur at the distance&nbsp; $f_0 = 1/T$&nbsp;.
 +
*With&nbsp; $f_0 = 1/(2T) = f = 10 \;{\rm{kHz}}$&nbsp;  the real part is&nbsp; $0$, but not the imaginary part.
 +
*With the arguments&nbsp; $f \cdot T = 0.5,\ 1.5,\ 2.5,\hspace{0.05cm}\text{ ... }$&nbsp; the sine function is in each case equal in magnitude to&nbsp; $1$, and it holds:
 
   
 
   
$$\left| {X( f )} \right| = \frac{A}{ {{\rm{\pi }}\left| f \right|}} = X_{\rm S} ( f ).$$
+
:$$\left| {X( f )} \right| = \frac{A}{ {{\rm{\pi }}\left| f \right|}} = X_{\rm S} ( f ).$$
 +
 
 +
*At other frequencies,&nbsp; $X_{\rm S}(f)$&nbsp; serves as an upper bound, i.e.&nbsp; $|Xf)| \leq X_{\rm S}(f)$&nbsp; always applies.
 +
*In the sketch, this bound is drawn as a violet curve in addition to&nbsp; $|X(f)|$.
 +
 
  
Bei anderen Frequenzen dient XS(f) als obere Schranke, d. h. es gilt stets $|X(f)| \geq X_S(f)$. In obiger Skizze ist diese Schranke zusätzlich zu $|X(f)|$ eingezeichnet (violette Kurve).
 
Richtig sind somit die Lösungsvorschläge 1 und 3.
 
  
'''4.''' Nach der Definition auf der Angabenseite kann man die Phasenfunktion wie folgt berechnen:
+
'''(4)'''&nbsp; According to the definition on the information page, one can calculate the phase function as follows:
 
   
 
   
$$\varphi ( f ) =  - \arctan \frac{ { {\mathop{\rm Im}\nolimits} ( f )}}{ { {\mathop{\rm Re}\nolimits} ( f )}}.$$
+
:$$\varphi ( f ) =  - \arctan \frac{ { {\mathop{\rm Im}\nolimits} ( f )}}{ { {\mathop{\rm Re}\nolimits} ( f )}}.$$
  
Mit den Ergebnissen aus Teilaufgabe 1.) gilt somit:
+
*With the results from subtask&nbsp; '''(1)'''&nbsp; the following thus applies:
 
   
 
   
$$\varphi ( f ) = \arctan \left( {\frac{ {1 - \cos ( {\omega T} )}}{ {\sin ( {\omega T} )}}} \right).$$
+
:$$\varphi ( f ) = \arctan \left( {\frac{ {1 - \cos ( {\omega T} )}}{ {\sin ( {\omega T} )}}} \right).$$
  
Das Argument dieser Funktion ist entsprechend der Angabe gleich $\tan(\omega T/2) = \tan(\pi fT)$. Daraus folgt ein mit der Frequenz linear ansteigender Verlauf:
+
*The argument of this function is equal to&nbsp; $\tan(\omega T/2) = \tan(\pi fT)$&nbsp; according to the specification.&nbsp; From this follows a linearly increasing course with frequency:
 
   
 
   
$$\varphi ( f ) = \arctan \left( {\tan ( { {\rm{\pi }}fT} )} \right) = {\rm{\pi }}fT.$$
+
:$$\varphi ( f ) = \arctan \left( {\tan ( { {\rm{\pi }}fT} )} \right) = {\rm{\pi }}fT.$$
  
Mit $f = 10$ kHz und $T = 50$ µs erhält man daraus den Phasenwinkel $\pi /2$ (90°).
+
*With&nbsp; $f = 10\,\text{kHz}$&nbsp;  and&nbsp; $T = 50\,\text{µs}$&nbsp;  one obtains from this the phase angle&nbsp; $\pi /2$&nbsp; corresponding to&nbsp; $\underline{90^{\circ}}$ .
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^3. Aperiodische Signale - Impulse^]]
+
[[Category:Signal Representation: Exercises|^3.2 Special Cases of Pulses^]]

Latest revision as of 11:36, 23 April 2021

Rectangular pulse and its spectrum

A rectangular pulse  $x(t)$  with duration  $T = 50\,\text{µs}$  and height  $A = 2\,\text{V}$ is considered.  At the jumping points at  $t = 0$  and  $t = T$  the signal value is  $A/2$  in each case, but this has no influence on the solution of the task.

In the lower graph, the corresponding spectral function is sketched qualitatively according to magnitude and phase.  It is valid:

$$X( f ) = \left| {X( f )} \right| \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \varphi ( f )} .$$

The analytical function progression of  $X(f)$  is to be determined.




Hints:

  • This task belongs to the chapter  Special Cases of Pulses.
  • Use one of the functions  $\text{si}(x) = \sin(x)/x$  or  $\text{sinc}(x) = \sin(\pi x)/(\pi x)$.
  • The following trigonometric transformations are given:
$$\sin ^2( \alpha ) = {1}/{2} \cdot \big( {1 - \cos ( {2\alpha } )} \big),\hspace{0.5cm} \tan( {\alpha /2} ) = \frac{ {1 - \cos ( \alpha )}}{ {\sin ( \alpha )}}.$$


Questions

1

Calculate the spectral function  $X(f)$  in general.  What value results at the frequency  $f=10\, \text{kHz}$?

${\rm Re}\big[X(f=10 \,\text{kHz})\big] \ = \ $

  $\text{mV/Hz}$
${\rm Im}\big[X(f=10\, \text{kHz})\big]\ = \ $

  $\text{mV/Hz}$

2

Calculate the magnitude function  $|X(f)|$  in general.  What values result for the frequencies  $f = 0$  and  $f=20 \,\text{kHz}$?

$|X(f=0)|\ = \ $

  $\text{mV/Hz}$
$|X(f=20\, \text{kHz})|\ = \ $

  $\text{mV/Hz}$

3

Which of the following statements are true regarding  $|X(f)|$?

$|X(f)|$  has zeros at multiples of  $f_0 = 1/T$.
$|X(f)|$  has zeros at multiples of  $f_0 = 1/(2T)$.
In the middle between two zeros  $|X(f)| = |A/(\pi f)|$ is true.

4

Calculate the phase function  $\varphi (f)$.  What phase angle (in degrees) results at the frequency  $f=10\, \text{kHz}$?

$\varphi (f=10\, \text{kHz})\ = \ $

  $\text{deg}$


Solution

(1)  With the abbreviation  $\omega = 2\pi f$  the spectral function is according to the first Fourier integral:

$$X( f ) = \int_0^T {A \cdot {\rm{e}}^{-{\rm{j}}\omega t} \hspace{0.05cm}{\rm d}t = } \int_0^T {A \cdot \cos \left( {\omega t} \right)\hspace{0.05cm}{\rm d}t }\hspace{0.1cm}-\hspace{0.1cm} {\rm{j}} \cdot \int_{\rm{0}}^T {A \cdot \sin ( {\omega t} )} \hspace{0.05cm}{\rm d}t.$$
  • After integration and insertion of the limits, it follows:
$${\mathop{\rm Re}\nolimits} [ {X( f )} ] = \frac{A}{\omega } \cdot \sin( {\omega T} ),$$
$${\mathop{\rm Im}\nolimits} [ {X( f)} ] = \frac{A}{\omega } \cdot \left( {\cos ( {\omega T}) - 1} \right) = - \frac{A}{\omega } \cdot\left( {1 - \cos ( {\omega T} )} \right).$$
  • For the frequency  $f = 1/(2T) = 10\, \text{kHz}$   ⇒   $\omega \cdot T = \pi$  we get:
$${\mathop{\rm Re}\nolimits}[{X( {f = 10 \;{\rm{kHz}}} )}] = \frac{A}{ {2{\rm{\pi }}f}} \cdot \sin ( {\rm{\pi }} ) \hspace{0.15 cm}\underline{= 0},$$
$${\mathop{\rm Im}\nolimits} [ {X( {f = 10 \;{\rm{kHz}}})} ] = \frac{ { - A}}{ {2{\rm{\pi }}f}} \cdot \big( {1 - \cos ( {\rm{\pi }} )} \big) = - \frac{ { A}}{{ {\rm{\pi }}f}}\hspace{0.15 cm}\underline{= - 0.0637 \;{\rm{mV/Hz}}}{\rm{.}}$$


(2)  The magnitude square is the sum of the real and imaginary parts, squared in each case:

$$\left| {X( f )} \right|^2 = \frac{ {A^2 }}{ {\omega ^2 }}\big[ {\sin ^2 ( {\omega T} ) + 1 - 2 \cdot \cos ( {\omega T}) + \cos ^2 ( {\omega T} )} \big].$$
  • Because of  $\sin^2(\alpha) + \cos^2(\alpha) = 1$ , this can also be written:
$$\left| {X( f )} \right|^2 = \frac{ {2A^2 }}{ {\omega ^2 }} \cdot \big( {1 - \cos ( {\omega T} )} \big) = \frac{ {4A^2 }}{ {\omega ^2 }} \cdot \sin ^2( {\omega T/2} ).$$
  • Setting   $\omega = 2\pi f$  and taking the root, we obtain, under the condition  $A > 0$:
$$\left| {X( f )} \right| = \left| \frac{A}{ {\rm\pi }f} \cdot \sin ( {\rm \pi }fT ) \right| = A \cdot T \cdot \left| \frac{\sin ( {\rm\pi }fT )}{ {\rm \pi}fT} \right|.$$
  • With the shortcuts  $\text{si}(x) = \sin(x)/x$  or  $\text{sinc}(x) = \sin(\pi x)/(\pi x)$  the results are:
$$\left| {X( f)} \right| = A \cdot T \cdot\left|{\rm si} ( { {\rm{\pi }}fT} ) \right|,$$
$$\left| {X( f)} \right| = A \cdot T \cdot\left|{\rm sinc} ( fT ) \right|.$$
  • The spectral value at the frequency  $f = 1/T = \text{20 kHz}$  is given by
$$\left| {X( {f = 20\;{\rm{kHz}}} )} \right| = \frac{ {A \cdot T}}{ {\rm{\pi }}} \cdot \sin ( {\rm{\pi }} ) \hspace{0.15 cm}\underline{= 0}.$$
  • When calculating the value for  $f = 0$  the quotient is  $\text{"0 divided by 0"}$.  By applying  L'Hospitals rule  the limiting value can be calculated:
$$\mathop {\lim }\limits_{x \to 0 } \frac{ {\sin \left( x \right)}}{x} = 1.$$
  • From this follows:
$$\left| {X( {f = 0} )} \right| = A \cdot T \hspace{0.15 cm}\underline{= 0.1 \;{\rm{mV/Hz}}}{\rm{.}}$$
  • This result is obvious because, according to the first Fourier integral, the spectral value at  $f = 0$  corresponds exactly to the area under the time function.


Magnitude spectrum of the rectangular pulse

(3)  The proposed solutions 1 and 3 are correct:

  • According to the result of subtask  (2)  the zeros occur at the distance  $f_0 = 1/T$ .
  • With  $f_0 = 1/(2T) = f = 10 \;{\rm{kHz}}$  the real part is  $0$, but not the imaginary part.
  • With the arguments  $f \cdot T = 0.5,\ 1.5,\ 2.5,\hspace{0.05cm}\text{ ... }$  the sine function is in each case equal in magnitude to  $1$, and it holds:
$$\left| {X( f )} \right| = \frac{A}{ {{\rm{\pi }}\left| f \right|}} = X_{\rm S} ( f ).$$
  • At other frequencies,  $X_{\rm S}(f)$  serves as an upper bound, i.e.  $|Xf)| \leq X_{\rm S}(f)$  always applies.
  • In the sketch, this bound is drawn as a violet curve in addition to  $|X(f)|$.


(4)  According to the definition on the information page, one can calculate the phase function as follows:

$$\varphi ( f ) = - \arctan \frac{ { {\mathop{\rm Im}\nolimits} ( f )}}{ { {\mathop{\rm Re}\nolimits} ( f )}}.$$
  • With the results from subtask  (1)  the following thus applies:
$$\varphi ( f ) = \arctan \left( {\frac{ {1 - \cos ( {\omega T} )}}{ {\sin ( {\omega T} )}}} \right).$$
  • The argument of this function is equal to  $\tan(\omega T/2) = \tan(\pi fT)$  according to the specification.  From this follows a linearly increasing course with frequency:
$$\varphi ( f ) = \arctan \left( {\tan ( { {\rm{\pi }}fT} )} \right) = {\rm{\pi }}fT.$$
  • With  $f = 10\,\text{kHz}$  and  $T = 50\,\text{µs}$  one obtains from this the phase angle  $\pi /2$  corresponding to  $\underline{90^{\circ}}$ .