Difference between revisions of "Aufgaben:Exercise 3.3: Moments for Cosine-square PDF"

From LNTwww
Line 19: Line 19:
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Für die Lösung dieser Aufgabe können Sie das folgende unbestimmte Integral benutzen:
 
*Für die Lösung dieser Aufgabe können Sie das folgende unbestimmte Integral benutzen:
:$$x^{2}\cdot {\cos}(ax)\,{\rm d}x=\frac{2 x}{ a^{ 2}}\cdot \cos(ax)+\frac({x^{\rm 2}}{\it a} - \frac{\rm 2}{\it a^{\rm 3}})\cdot \rm sin(\it ax \rm ) .$$
+
:$$\int x^{2}\cdot {\cos}(ax)\,{\rm d}x=\frac{2 x}{ a^{ 2}}\cdot \cos(ax)+ \left [\frac{x^{\rm 2}}{\it a} - \frac{\rm 2}{\it a^{\rm 3}} \right ]\cdot \rm sin(\it ax \rm ) .$$
  
  
Line 68: Line 68:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Unter allen Umst&auml;nden richtig sind <u>die Aussagen 3, 4 und 5</u>. Die erste Aussage ist nie erf&uuml;llt, wie aus dem <i>Satz von Steiner</i> ersichtlich ist. Die zweite Aussage gilt nur in dem einen Sonderfall <i>x</i> = 0. Es gibt aber auch mittelwertfreie Zufallsgr&ouml;&szlig;en mit unsymmetrischer WDF. Das bedeutet: Die Aussage 6 trifft nicht immer zu.
+
'''(1)'''&nbsp; Unter allen Umst&auml;nden richtig sind <u>die Aussagen 3, 4 und 5</u>:
 +
*Die erste Aussage ist nie erf&uuml;llt, wie aus dem <i>Satz von Steiner</i> ersichtlich ist.  
 +
*Die zweite Aussage gilt nur im Sonderfall $x = 0$.  
 +
Es gibt aber auch mittelwertfreie Zufallsgr&ouml;&szlig;en mit unsymmetrischer WDF. Das bedeutet: Die Aussage 6 trifft nicht immer zu.
  
:<b>2.</b>&nbsp;&nbsp;Aufgrund der WDF-Symmetrie bez&uuml;glich <i>x</i> = 0 ergibt sich f&uuml;r den linearen Mittelwert <i>m<sub>x</sub></i> <u>= 0</u>.
+
'''(2)'''&nbsp; Aufgrund der WDF-Symmetrie bez&uuml;glich $x = 0$ ergibt sich f&uuml;r den linearen Mittelwert $m_x \hspace{0.15cm}\underline{= 0}$.
  
:<b>3.</b>&nbsp;&nbsp;Der Effektivwert des Signals <i>x</i>(<i>t</i>) ist gleich der Streuung <i>&sigma;<sub>x</sub></i> bzw. gleich der Wurzel aus der Varianz <i>&sigma;<sub>x</sub></i><sup>2</sup>. Da die Zufallsgr&ouml;&szlig;e <i>x</i> den Mittelwert <i>m</i><sub>x</sub> = 0 aufweist, ist die Varianz nach dem <i>Satz von Steiner</i> gleich dem quadratischen Mittelwert. Dieser wird in Zusammenhang mit Signalen auch als die Leistung (bezogen auf 1 &Omega;) bezeichnet. Somit gilt:
+
'''(3)'''&nbsp; Der Effektivwert des Signals $x(t)$ ist gleich der Streuung $\sigma_x$ bzw. gleich der Wurzel aus der Varianz $\sigma_x^2$. Da die Zufallsgr&ouml;&szlig;e $x$ den Mittelwert $m_x {= 0}$ aufweist, ist die Varianz nach dem <i>Satz von Steiner</i> gleich dem quadratischen Mittelwert. Dieser wird in Zusammenhang mit Signalen auch als die Leistung (bezogen auf $1 \ \rm \Omega$) bezeichnet. Somit gilt:
:$$\sigma_x^{\rm 2}=\int_{-\infty}^{+\infty}x^{\rm 2}\cdot f_x(x)\hspace{0.1cm}{\rm d}x=2 \cdot \int_{\rm 0}^{\rm 2}\frac{x^{\rm 2}}{\rm 2}\cdot \rm cos^2(\frac{\pi}{\rm 4}\cdot\it x)\it\hspace{0.1cm} {\rm d}x.$$
+
$$\sigma_x^{\rm 2}=\int_{-\infty}^{+\infty}x^{\rm 2}\cdot f_x(x)\hspace{0.1cm}{\rm d}x=2 \cdot \int_{\rm 0}^{\rm 2} x^2/2 \cdot \cos^2({\pi}/4\cdot\it x)\hspace{0.1cm} {\rm d}x.$$
  
:Mit der Beziehung cos&sup2;(<i>&alpha;</i>) = 0.5 &middot; (1 + cos(2<i>&alpha;</i>)) folgt daraus:
 
:$$\sigma_x^{\rm 2}=\int_{\rm 0}^{\rm 2}\frac{x^{\rm 2}}{\rm 2}\it \hspace{0.1cm}{\rm d}x  +  \int_{\rm 0}^{\rm 2}\frac{x^{\rm 2}}{\rm 2}\rm\cdot cos(\frac{\pi}{\rm 2}\cdot\it x)\it \hspace{0.1cm} {\rm d}x.$$
 
  
:Diese beiden Standardintegrale findet man in Tabellen (bzw. auf dem Angabenblatt). Man erh&auml;lt mit <i>a</i> = &pi;/2:
+
Mit der Beziehung $\cos^2(\alpha) = 0.5 \cdot [1 + \cos(2\alpha)]$ folgt daraus:
:$$\sigma_x^{\rm 2}=\left[\frac{x^{\rm 3}}{\rm 6} +  \frac{x}{a^2}\cdot {\rm cos}(a \cdot \it x) + \left( \frac{x^{\rm2}}{{\rm2}a} - \frac{{\rm 1}}{a^{\rm3}} \right){\rm sin}(a \cdot \it x)\right]_{x=0}^{x=2}$$
+
$$\sigma_x^2=\int_{\rm 0}^{\rm 2}{x^{\rm 2}}/{\rm 2} \hspace{0.1cm}{\rm d}x  +  \int_{\rm 0}^{\rm 2}{x^{\rm 2}}/{2}\cdot \cos({\pi}/{\rm 2}\cdot\it x) \hspace{0.1cm} {\rm d}x.$$
:$$\Rightarrow \hspace{0.5cm} \sigma_{x}^{\rm 2}=\frac{\rm 4}{\rm 3}-\frac{\rm 8}{\rm \pi^2}\approx 0.524\hspace{0.5cm} \Rightarrow \hspace{0.5cm}\sigma_x \hspace{0.15cm}\underline{\approx 0.722}.$$
 
  
:<b>4.</b>&nbsp;&nbsp;Richtig ist der <u>erstgenannte Vorschlag</u>. Die Variante <i>y</i> = 2<i>x</i> w&uuml;rde eine zwischen -4 und +4 verteilte Zufallsgr&ouml;&szlig;e liefern. Beim letzten Vorschlag w&auml;re der Mittelwert <i>m</i><i><sub>y</sub></i> = &ndash;1.
+
Diese beiden Standardintegrale findet man in Tabellen. Man erh&auml;lt mit $a = \pi/2$:
 +
$$\sigma_x^{\rm 2}=\left[\frac{x^{\rm 3}}{\rm 6}  +  \frac{x}{a^2}\cdot {\cos}(a  x) + \left( \frac{x^{\rm2}}{{\rm2}a} - \frac{1}{a^3} \right) \cdot \sin(a \cdot  x)\right]_{x=0}^{x=2} \hspace{0.5cm}
 +
\Rightarrow \hspace{0.5cm} \sigma_{x}^{\rm 2}=\frac{\rm 4}{\rm 3}-\frac{\rm 8}{\rm \pi^2}\approx 0.524\hspace{0.5cm} \Rightarrow \hspace{0.5cm}\sigma_x \hspace{0.15cm}\underline{\approx 0.722}.$$
  
:<b>5.</b>&nbsp;&nbsp;Aus der Grafik auf dem Angabenblatt ist bereits offensichtlich, dass <i>m<sub>y</sub></i> <u>= 1</u> gilt.
+
'''(4)'''&nbsp; Richtig ist der <u>erstgenannte Vorschlag</u>:
 +
* Die Variante $y = 2x$ w&uuml;rde eine zwischen $-4$ und $+4$ verteilte Zufallsgr&ouml;&szlig;e liefern.
 +
*Beim letzten Vorschlag $y = x/2-1$ w&auml;re der Mittelwert $m_y = -1$.
  
:<b>6.</b>&nbsp;&nbsp;Der Mittelwert &auml;ndert nichts an der Varianz und an der Streuung. Durch die Stauchung um den Faktor 2 wird die Streuung gegen&uuml;ber Teilaufgabe c) ebenfalls um diesen Faktor kleiner:
+
 
:$$\sigma_y=\sigma_x/\rm 2\hspace{0.15cm}\underline{\approx 0.361}.$$
+
'''(5)'''&nbsp; Aus der Grafik auf dem Angabenblatt ist bereits offensichtlich, dass $m_y \hspace{0.15cm}\underline{=+1}$ gelten muss.
 +
 
 +
'''(6)'''&nbsp; Der Mittelwert &auml;ndert nichts an der Varianz und an der Streuung. Durch die Stauchung um den Faktor $2$ wird die Streuung gegen&uuml;ber Teilaufgabe (3) ebenfalls um diesen Faktor kleiner:
 +
$$\sigma_y=\sigma_x/\rm 2\hspace{0.15cm}\underline{\approx 0.361}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 17:34, 9 March 2017

Momente bei Cosinus-Quadrat-WDF

Wie in Aufgabe 3.1 und Aufgabe 3.2 betrachten wir die auf den Wertebereich von $-2$ bis $+2$ beschränkte Zufallsgröße $x$ mit folgender WDF in diesem Abschnitt: $$f_x(x)= {1}/{2}\cdot \cos^2({\pi}/{4}\cdot { x}).$$

Daneben betrachten wir eine zweite Zufallsgröße $y$ , die nur Werte zwischen $0$ und $2$ mit folgender WDF liefert: $$f_y(y)=\sin^2({\pi}/{2}\cdot y).$$

Beide Dichtefunktionen sind in der Grafik dargestellt. Außerhalb der Bereiche $-2 < x < +2$   bzw.   $0 < x < +2$ gilt jeweils $f_x(x) = 0$   bzw.   $f_y(y) = 0$.

Weiter ist anzumerken, dass die beiden Zufallsgrößen als (normierte) Momentanwerte der zugehörigen Zufallssignale $x(t)$ bzw. $y(t)$ aufgefasst werden können.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Erwartungswerte und Momente.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Für die Lösung dieser Aufgabe können Sie das folgende unbestimmte Integral benutzen:
$$\int x^{2}\cdot {\cos}(ax)\,{\rm d}x=\frac{2 x}{ a^{ 2}}\cdot \cos(ax)+ \left [\frac{x^{\rm 2}}{\it a} - \frac{\rm 2}{\it a^{\rm 3}} \right ]\cdot \rm sin(\it ax \rm ) .$$


Fragebogen

1

Welche der folgenden Aussagen treffen bei jeder beliebigen WDF $f_x(x)$ zu?
Verwendet sind folgende Größen:   $m_1$: linearer Mittelwert, $m_2$: quadratischer Mittelwert, $\sigma^2$: Varianz.

$m_2 = 0$,   falls $m_1 \ne 0$.
$m_2 = 0$,   falls $m_1 = 0$.
$m_1 = 0$,   falls $m_2 = 0$.
$m_2 > \sigma^2$,   falls $m_1 \ne 0$.
$m_1 = 0$,   falls $f_x(-x) = f_x(x)$.
$f_x(-x) = f_x(x)$,   falls $m_1 = 0$.

2

Wie groß ist der Gleichanteil (lineare Mittelwert) des Signals $x(t)$?

$m_x \ = $

3

Wie groß ist der Effektivwert des Signals $x(t)$?

$\sigma_x \ = $

4

Die Zufallsgröße $y$ lässt sich aus $x$ ableiten. Welche Zuordnung gilt?

$y = 1+x/2.$
$y = 2x.$
$y = x/2-1.$

5

Wie groß ist der Gleichanteil des Signals $y(t)$?

$m_y\ = $

6

Wie groß ist der Effektivwert des Signals $y(t)$?

$\sigma_y\ = $


Musterlösung

(1)  Unter allen Umständen richtig sind die Aussagen 3, 4 und 5:

  • Die erste Aussage ist nie erfüllt, wie aus dem Satz von Steiner ersichtlich ist.
  • Die zweite Aussage gilt nur im Sonderfall $x = 0$.

Es gibt aber auch mittelwertfreie Zufallsgrößen mit unsymmetrischer WDF. Das bedeutet: Die Aussage 6 trifft nicht immer zu.

(2)  Aufgrund der WDF-Symmetrie bezüglich $x = 0$ ergibt sich für den linearen Mittelwert $m_x \hspace{0.15cm}\underline{= 0}$.

(3)  Der Effektivwert des Signals $x(t)$ ist gleich der Streuung $\sigma_x$ bzw. gleich der Wurzel aus der Varianz $\sigma_x^2$. Da die Zufallsgröße $x$ den Mittelwert $m_x {= 0}$ aufweist, ist die Varianz nach dem Satz von Steiner gleich dem quadratischen Mittelwert. Dieser wird in Zusammenhang mit Signalen auch als die Leistung (bezogen auf $1 \ \rm \Omega$) bezeichnet. Somit gilt: $$\sigma_x^{\rm 2}=\int_{-\infty}^{+\infty}x^{\rm 2}\cdot f_x(x)\hspace{0.1cm}{\rm d}x=2 \cdot \int_{\rm 0}^{\rm 2} x^2/2 \cdot \cos^2({\pi}/4\cdot\it x)\hspace{0.1cm} {\rm d}x.$$


Mit der Beziehung $\cos^2(\alpha) = 0.5 \cdot [1 + \cos(2\alpha)]$ folgt daraus: $$\sigma_x^2=\int_{\rm 0}^{\rm 2}{x^{\rm 2}}/{\rm 2} \hspace{0.1cm}{\rm d}x + \int_{\rm 0}^{\rm 2}{x^{\rm 2}}/{2}\cdot \cos({\pi}/{\rm 2}\cdot\it x) \hspace{0.1cm} {\rm d}x.$$

Diese beiden Standardintegrale findet man in Tabellen. Man erhält mit $a = \pi/2$: $$\sigma_x^{\rm 2}=\left[\frac{x^{\rm 3}}{\rm 6} + \frac{x}{a^2}\cdot {\cos}(a x) + \left( \frac{x^{\rm2}}{{\rm2}a} - \frac{1}{a^3} \right) \cdot \sin(a \cdot x)\right]_{x=0}^{x=2} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} \sigma_{x}^{\rm 2}=\frac{\rm 4}{\rm 3}-\frac{\rm 8}{\rm \pi^2}\approx 0.524\hspace{0.5cm} \Rightarrow \hspace{0.5cm}\sigma_x \hspace{0.15cm}\underline{\approx 0.722}.$$

(4)  Richtig ist der erstgenannte Vorschlag:

  • Die Variante $y = 2x$ würde eine zwischen $-4$ und $+4$ verteilte Zufallsgröße liefern.
  • Beim letzten Vorschlag $y = x/2-1$ wäre der Mittelwert $m_y = -1$.


(5)  Aus der Grafik auf dem Angabenblatt ist bereits offensichtlich, dass $m_y \hspace{0.15cm}\underline{=+1}$ gelten muss.

(6)  Der Mittelwert ändert nichts an der Varianz und an der Streuung. Durch die Stauchung um den Faktor $2$ wird die Streuung gegenüber Teilaufgabe (3) ebenfalls um diesen Faktor kleiner: $$\sigma_y=\sigma_x/\rm 2\hspace{0.15cm}\underline{\approx 0.361}.$$