Difference between revisions of "Aufgaben:Exercise 3.3: Sum of two Oscillations"

From LNTwww
 
(28 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Phasenmodulation (PM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM)
 
}}
 
}}
  
[[File:P_ID1084__Mod_A_3_3.png|right|]]
+
[[File:P_ID1084__Mod_A_3_3.png|right|frame|Two different Bessel spectra]]
Das äquivalente TP–Signal bei Phasenmodulation lautet
+
The equivalent low-pass signal with phase modulation, when normalized to the carrier amplitude $(A_{\rm T} = 1)$ is: 
$$ s_{\rm TP}(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}K_{\rm PM}\hspace{0.05cm}\cdot \hspace{0.05cm}q(t) }\hspace{0.05cm},$$
+
:$$ s_{\rm TP}(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}K_{\rm PM}\hspace{0.05cm}\cdot \hspace{0.05cm}q(t) }\hspace{0.05cm},$$
wenn eine Normierung auf die Trägeramplitude vorgenommen wird ($A_T = 1$). Die Modulatorkonstante wird in der gesamten Aufgabe zu $K_{PM} = 1/V$ angenommen.
+
The modulator constant is assumed to be  $K_{\rm PM} = \rm 1/V$  throughout the task.
  
  
Die obere Grafik zeigt die dazugehörige Spektralfunktion $B_1(f)$, wenn das Quellensignal
+
The upper graph shows the corresponding spectral function  $B_1(f)$, when the source signal is
$$q_1(t) = 0.9\,{\rm V} \cdot \sin(2 \pi \cdot 1\,{\rm kHz} \cdot t)$$
+
:$$q_1(t) = 0.9\,{\rm V} \cdot \sin(2 \pi \cdot 1\,{\rm kHz} \cdot t)$$
anliegt. Die Gewichte der Bessel-Diraclinien ergeben sich mit $η_1 = 0.9$ wie folgt:
+
The weights of the Bessel-Dirac delta lines when  $η_1 = 0.9$  are obtained as follows:
$${\rm J}_0 (0.9)  = 0.808 \approx 0.8,$$
+
:$${\rm J}_0 (0.9)  = 0.808 \approx 0.8,\hspace{1cm}
$${\rm J}_1 (0.9) = 0.406 \approx 0.4,$$  
+
{\rm J}_1 (0.9) = 0.406 \approx 0.4,$$  
$${\rm J}_2 (0.9)  = 0.095 \approx 0.1,$$
+
:$${\rm J}_2 (0.9)  = 0.095 \approx 0.1,\hspace{1cm}
$${\rm J}_3 (0.9)  \approx {\rm J}_4 (0.9) \approx ... \approx 0 \hspace{0.05cm}.$$
+
{\rm J}_3 (0.9)  \approx {\rm J}_4 (0.9) \approx\ \text{ ...} \  \approx 0 \hspace{0.05cm}.$$
Verwenden Sie zur Vereinfachung der Berechnungen die in der Skizze angegebenen Näherungswerte.
+
Use the approximations given in the graph to simplify the calculations.
  
Die Besselfunktion $B_2(f)$ ergibt sich für das Quellensignal
+
The Bessel function  $B_2(f)$  is obtained for the source signal
$$q_2(t) = 0.65\,{\rm V} \cdot \cos(2 \pi \cdot 3\,{\rm kHz} \cdot t)$$
+
:$$q_2(t) = 0.65\,{\rm V} \cdot \cos(2 \pi \cdot 3\,{\rm kHz} \cdot t)$$
Die Zahlenwerte der Diraclinien erhält man aus
+
The numerical values of the Dirac delta lines are obtained from the following:
$${\rm J}_0 (0.65) = 0.897 \approx 0.9,\hspace{0.3cm}{\rm J}_1 (0.65) = 0.308 \approx 0.3, \hspace{0.3cm}{\rm J}_2 (0.65) = 0.051 \approx 0\hspace{0.05cm}.$$
+
:$${\rm J}_0 (0.65) = 0.897 \approx 0.9,\hspace{0.3cm}{\rm J}_1 (0.65) = 0.308 \approx 0.3, \hspace{0.3cm}{\rm J}_2 (0.65) = 0.051 \approx 0\hspace{0.05cm}.$$
Aus der obigen Grafik ist zu erkennen, dass aufgrund des cosinusförmigen Quellensignals $q_2(t)$ und des cosinusförmigen Trägersignals $z(t)$ die Spektrallinien bei $±3 kHz$ jeweils positiv–imaginär sind.
+
From the graph, it can be seen that due to the cosine source signal  $q_2(t)$  and the cosine carrier signal $z(t)$ , the spectral lines at $±3 \ \rm kHz$  are both positive and imaginary.
  
Im Rahmen dieser Aufgabe soll nun der Fall untersucht werden, dass das Quellensignal
+
In the context of this task, we will now investigate the case where the source signal
$$q(t) = q_1(t) + q_2(t)$$
+
:$$q(t) = q_1(t) + q_2(t)$$
am Eingang des Phasenmodulators anliegt. Zu erwähnen ist, dass $|q(t)| < q_{max} = 1.45 V$ gilt. Dieser Maximalwert ist etwas kleiner als die Summe $A_1 + A_2$ der Einzelamplituden, wenn eine Sinus– und eine Cosinusfunktion mit den gegebenen Amplituden aufaddiert werden.
+
is applied to the input of the phase modulator.  
 +
*It is worth mentioning that &nbsp;$|q(t)| < q_{\rm max} = 1.45 \ \rm V$&nbsp;.  
 +
*This maximum value is slightly smaller than the sum &nbsp;$A_1 + A_2$&nbsp;of the individual amplitudes when a sine and a cosine function with the given amplitudes are added up.
  
Im Fragebogen bezeichnen $S_{TP}(f)$ und $S_+(f)$ die Spektralfunktionen von äquivalentem TP–Signal und analytischem Signal unter der Annahme, dass $q(t)$ anliegt und die Trägerfrequenz $f_T = 100 kHz$ beträgt.
 
  
'''Hinweis:''' Die Aufgabe bezieht sich auf den Theorieteil von [http://en.lntwww.de/Modulationsverfahren/Phasenmodulation_(PM) Kapitel 3.1].
+
In the following questionnaire,
===Fragebogen===
+
*$S_{\rm TP}(f)$&nbsp; denotes the spectral function of the equivalent low-pass signal,
 +
*$S_+(f)$&nbsp; denotes the spectral functions of the analytic signal,
 +
 
 +
 
 +
in both cases assuming that &nbsp;$q(t) = q_1(t) + q_2(t)$&nbsp; holds and that the carrier frequency is&nbsp;$f_{\rm T} = 100 \ \rm kHz$&nbsp;.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''  
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
 +
*Particular reference is made to the page&nbsp;  [[Modulation_Methods/Phase_Modulation_(PM)#Equivalent_low-pass_signal_in_phase_modulation|Equivalent low-pass signal in phase modulation]].
 +
*The values of the Bessel functions can be found in formula collections in table form.
 +
*You can also use the interactive applet &nbsp; [[Applets:Bessel_functions_of_the_first_kind| Bessel functions of the first kind]]&nbsp; to solve this task.
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche geometrische Figur beschreibt die Ortskurve $s_{TP}(t)$?
+
{Let &nbsp;$q(t) = q_1(t)+q_2(t)$.&nbsp; Which geometric figure describes the given locus curve&nbsp;$s_{\rm TP}(t)$?
|type="[]"}
+
|type="()"}
- Die Ortskurve ist eine Ellipse.
+
- The locus curve is an ellipse.
- Die Ortskurve ist ein Kreis.
+
- The locus curve is a circle.
+ Die Ortskurve ist näherungsweise ein Halbkreis.
+
+ The locus curve is approximately a semi-circle.
- Die Ortskurve ist ein Kreisbogen, etwa mit Öffnungswinkel 90°.
+
- The locus curve is an arc, with an approximate opening angle of  &nbsp;$90^\circ$.
  
{Berechnen Sie die Spektralfunktion $S_{TP}(f)$. Zwischen welchen Frequenzen $f_{min}$ und $f_{max}$ liegen Spektrallinien?
+
{Calculate the spectral function&nbsp;$S_{\rm TP}(f)$.&nbsp; Between what frequencies &nbsp;$f_{\rm min}$&nbsp; and &nbsp;$f_{\rm max}$&nbsp; do the spectral lines lie?
 
|type="{}"}
 
|type="{}"}
$f_{min}$ = { -5 3% } $KHz$
+
$f_{\rm min} \ = \ $ { -5.15--4.85 } $\ \rm kHz$
$f_{max}$ = { +5 3% } $KHz$
+
$f_{\rm max} \ = \ ${ 5 3% } $\ \rm kHz$
  
{Berechnen Sie das Gewicht der Diracfunktion bei $f = 0$.
+
{Calculate the weight of the Dirac function at &nbsp;$f = 0$.
 
|type="{}"}
 
|type="{}"}
$Re[S_{TP}(f = 0)]$ = { 0.72 3% }
+
${\rm Re}\big[S_{\rm TP}(f = 0)\big] \ = \ $ { 0.72 3% }
$Im[S_{TP}(f = 0)]$ = { 0 3% }
+
${\rm Im}\big[S_{\rm TP}(f = 0)\big] \ = \ $ { 0. }
  
{Berechnen Sie das Gewicht der Diracfunktion bei $f = 1 kHz$.
+
{Calculate the weight of the Dirac function at &nbsp;$f = 1\ \rm  kHz$.
 
|type="{}"}
 
|type="{}"}
$Re[S_{TP}(f = 1KHz)]$ = { 0.36 3% }
+
${\rm Re}\big[S_{\rm TP}(f = 1 \ \rm  kHz)\big] \ = \ $ { 0.36 3% }
$Im[S_{TP}(f = 1KHz)]$ = { 0.03 3% }
+
${\rm Im}\big[S_{\rm TP}(f = 1 \ \rm  kHz)\big] \ = \ $ { 0.03 3% }
  
{Berechnen Sie das Gewicht der $S_+(f)$–Diracfunktion bei $f = 98 kHz$.
+
{Calculate the weight of the &nbsp;$S_+(f)$–Dirac function at &nbsp;$f = 98 \ \rm kHz$.
 
|type="{}"}
 
|type="{}"}
$Re[S-+(f = 98 kHz)]$ = { 0.09 3% }
+
${\rm Re}\big[S_{\rm +}(f = 98 \ \rm  kHz)\big] \ = \ $ { 0.09 3% }
$Im[S_+(f = 98 kHz)]$ = { 0.12 3% }
+
${\rm Im}\big[S_{\rm +}(f = 98 \ \rm  kHz)\big] \ = \ $ { 0.12 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''Bei Winkelmodulation bewegt sich der komplexe Zeiger $s_{TP}(t)$ stets auf einem Kreisbogen, dessen Öffnungswinkel $2 · K_{PM} · q_{max} = 2.9 (≈ π = 180 °)$ beträgt. Richtig ist somit die dritte Alternative.
+
'''(1)'''&nbsp; The <u>third answer</u> is correct:
 +
*In angle modulation, the complex pointer &nbsp; $s_{\rm TP}(t)$&nbsp; always moves on a circular arc with the following opening angle:
 +
:$$2 · K_{\rm PM} · q_{\rm max} = 2 \cdot  {\rm 1/V} \cdot 1.45 \ \rm V = 2.9 \ \rm rad \approx 166^\circ.$$
 +
*Using the (admittedly very rough) approximation&nbsp; $166^\circ \approx 180^\circ$&nbsp; we indeed get a semicircle.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; In general, &nbsp; $S_{\rm TP}(f) = B_1(f) ∗ B_2(f)$ holds.
 +
*Since&nbsp; $B_1(f)$&nbsp; is limited to the frequencies &nbsp; $|f| ≤ 2 \ \rm kHz$&nbsp; and&nbsp; $B_2(f)$&nbsp; is limited to the range &nbsp; $±3 \ \rm  kHz$&nbsp;, the convolution product is limited to&nbsp; $|f| ≤ 5 \ \rm kHz$&nbsp;.
 +
*It follows that:
 +
:$$f_{\rm min} \hspace{0.15cm}\underline {= -5 \ \rm kHz},$$
 +
:$$f_{\rm max} \hspace{0.15cm}\underline {=+5 \ \rm kHz}.$$
 +
 
 +
 
  
 +
'''(3)'''&nbsp; The convolution product for frequency &nbsp; $f = 0$&nbsp; results from multiplying&nbsp; $B_1(f)$&nbsp; with&nbsp; $B_2(f)$&nbsp; and  summing.
 +
*Only for &nbsp; $f = 0$&nbsp; are both&nbsp; $B_1(f)$&nbsp; and&nbsp; $B_2(f)$&nbsp; non-zero.
 +
*Thus, we get:
 +
:$$ S_{\rm TP}(f = 0) = B_{1}(f = 0) \cdot B_{2}(f = 0)= 0.8 \cdot 0.9 \hspace{0.15cm}\underline {= 0.72}\hspace{0.2cm}{\rm (rein \hspace{0.15cm} reell)} \hspace{0.05cm}.$$
  
'''2.'''  Es gilt $S_{TP}(f) = B_1(f) ∗ B_2(f)$. Da $B_1(f)$ auf Frequenzen $|f| ≤ 2 kHz$ und $B_2(f)$ auf den Bereich $±3 kHz$ begrenzt sind, ist das Faltungsprodukt auf $|f| ≤ 5$ kHz beschränkt: $f_{min} = –5 kHz$, $f_{max} = 5 kHz$.
 
  
'''3.'''Das Faltungsprodukt für $f = 0$ ergibt sich durch Multiplikation von $B_1(f)$ mit $B_2(f)$ und anschließender Summation. Nur für $f = 0$ sind sowohl $B_1(f)$ als auch $B_2(f)$ von Null verschieden. Damit erhält man:
 
$$ S_{\rm TP}(f = 0) = B_{1}(f = 0) \cdot B_{2}(f = 0)= 0.8 \cdot 0.9 \hspace{0.15cm}\underline {= 0.72}\hspace{0.2cm}{\rm (rein \hspace{0.15cm} reell)} \hspace{0.05cm}.$$
 
  
 +
'''(4)'''&nbsp; Now, before multiplication and summation there needs to be a frequency shift of &nbsp; $B_2(f)$&nbsp; to the right – or of&nbsp; $B_1(f)$&nbsp; to the left– by &nbsp; $1 \ \rm kHz$&nbsp;.&nbsp; This gives:
 +
:$$S_{\rm TP}(f = 1\,{\rm kHz}) =  B_{1}(f = -2\,{\rm kHz}) \cdot B_{2}(f = 3\,{\rm kHz})
 +
+  B_{1}(f = 1\,{\rm kHz}) \cdot B_{2}(f = 0)
 +
= 0.1 \cdot {\rm j} \cdot 0.3 + 0.4 \cdot 0.9\hspace{0.15cm} = 0.36 + {\rm j} \cdot 0.03$$
 +
:$$\Rightarrow \hspace{0.3cm} {\rm Re}[S_{\rm TP}(f = 1\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.36} \hspace{0.05cm},\hspace{0.3cm} {\rm Im}[S_{\rm TP}(f = 1\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.03} \hspace{0.05cm}.$$
  
'''4.''' Nun muss vor der Multiplikation und Summation noch eine Frequenzverschiebung von $B_2(f)$ nach rechts – oder von $B_1(f)$ nach links – um 1 kHz erfolgen. Somit erhält man:
 
$$S_{\rm TP}(f = 1\,{\rm kHz}) =  B_{1}(f = -2\,{\rm kHz}) \cdot B_{2}(f = 3\,{\rm kHz}) +$$
 
$$ +  B_{1}(f = 1\,{\rm kHz}) \cdot B_{2}(f = 0)=$$
 
$$ = 0.1 \cdot {\rm j} \cdot 0.3 + 0.4 \cdot 0.9\hspace{0.15cm} = 0.36 + {\rm j} \cdot 0.03$$
 
$$\Rightarrow \hspace{0.3cm} {\rm Re}[S_{\rm TP}(f = 1\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.36} \hspace{0.05cm},\hspace{0.3cm} {\rm Im}[S_{\rm TP}(f = 1\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.03} \hspace{0.05cm}.$$
 
  
  
'''5.''' Die Diraclinie $S_+(f = 98 kHz)$ entspricht der $S_{TP}(f)$–Linie bei $f = –2 kHz$. Diese ist
+
'''(5)'''&nbsp; The Dirac delta line&nbsp; $S_+(f = 98 \ \rm kHz)$&nbsp; corresponds to the &nbsp; $S_{\rm TP}(f)$–line at&nbsp; $f = -2 \ \rm kHz$.&nbsp; This is
$$S_{\rm TP}(f = -2\,{\rm kHz}) =  B_{1}(f = -2\,{\rm kHz}) \cdot B_{2}(f = 0) +$$
+
:$$S_{\rm TP}(f \hspace{-0.05cm}=\hspace{-0.05cm} -2\,{\rm kHz}) \hspace{-0.03cm}=\hspace{-0.03cm} B_{1}(f = -2\,{\rm kHz}) \cdot B_{2}(f \hspace{-0.05cm}=\hspace{-0.05cm} 0) +
$$  + B_{1}(f = 1\,{\rm kHz}) \cdot B_{2}(f = -3\,{\rm kHz})=$$
+
  B_{1}(f \hspace{-0.05cm}=\hspace{-0.05cm} 1\,{\rm kHz}) \cdot B_{2}(f \hspace{-0.05cm}=\hspace{-0.05cm} -3\,{\rm kHz})= 0.1 \cdot 0.9 + 0.4 \cdot {\rm j} \cdot 0.3 \hspace{0.15cm}\hspace{-0.03cm}=\hspace{-0.03cm} 0.09 + {\rm j} \cdot 0.12$$
$$= 0.1 \cdot 0.9 + 0.4 \cdot {\rm j} \cdot 0.3 \hspace{0.15cm}= 0.09 + {\rm j} \cdot 0.12$$
+
:$$\Rightarrow \hspace{0.3cm} {\rm Re}[S_{\rm +}(f = 98\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.09} \hspace{0.05cm}, \hspace{0.3cm} {\rm Im}[S_{\rm +}(f = 98\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.12} \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm} {\rm Re}[S_{\rm +}(f = 98\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.09} \hspace{0.05cm}, \hspace{0.3cm} {\rm Im}[S_{\rm +}(f = 98\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.12} \hspace{0.05cm}.$$
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 90: Line 126:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.1 Phasenmodulation (PM)^]]
+
[[Category:Modulation Methods: Exercises|^3.1 Phase Modulation^]]

Latest revision as of 16:21, 18 January 2023

Two different Bessel spectra

The equivalent low-pass signal with phase modulation, when normalized to the carrier amplitude $(A_{\rm T} = 1)$ is: 

$$ s_{\rm TP}(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}K_{\rm PM}\hspace{0.05cm}\cdot \hspace{0.05cm}q(t) }\hspace{0.05cm},$$

The modulator constant is assumed to be  $K_{\rm PM} = \rm 1/V$  throughout the task.


The upper graph shows the corresponding spectral function  $B_1(f)$, when the source signal is

$$q_1(t) = 0.9\,{\rm V} \cdot \sin(2 \pi \cdot 1\,{\rm kHz} \cdot t)$$

The weights of the Bessel-Dirac delta lines when  $η_1 = 0.9$  are obtained as follows:

$${\rm J}_0 (0.9) = 0.808 \approx 0.8,\hspace{1cm} {\rm J}_1 (0.9) = 0.406 \approx 0.4,$$
$${\rm J}_2 (0.9) = 0.095 \approx 0.1,\hspace{1cm} {\rm J}_3 (0.9) \approx {\rm J}_4 (0.9) \approx\ \text{ ...} \ \approx 0 \hspace{0.05cm}.$$

Use the approximations given in the graph to simplify the calculations.

The Bessel function  $B_2(f)$  is obtained for the source signal

$$q_2(t) = 0.65\,{\rm V} \cdot \cos(2 \pi \cdot 3\,{\rm kHz} \cdot t)$$

The numerical values of the Dirac delta lines are obtained from the following:

$${\rm J}_0 (0.65) = 0.897 \approx 0.9,\hspace{0.3cm}{\rm J}_1 (0.65) = 0.308 \approx 0.3, \hspace{0.3cm}{\rm J}_2 (0.65) = 0.051 \approx 0\hspace{0.05cm}.$$

From the graph, it can be seen that due to the cosine source signal  $q_2(t)$  and the cosine carrier signal $z(t)$ , the spectral lines at $±3 \ \rm kHz$  are both positive and imaginary.

In the context of this task, we will now investigate the case where the source signal

$$q(t) = q_1(t) + q_2(t)$$

is applied to the input of the phase modulator.

  • It is worth mentioning that  $|q(t)| < q_{\rm max} = 1.45 \ \rm V$ .
  • This maximum value is slightly smaller than the sum  $A_1 + A_2$ of the individual amplitudes when a sine and a cosine function with the given amplitudes are added up.


In the following questionnaire,

  • $S_{\rm TP}(f)$  denotes the spectral function of the equivalent low-pass signal,
  • $S_+(f)$  denotes the spectral functions of the analytic signal,


in both cases assuming that  $q(t) = q_1(t) + q_2(t)$  holds and that the carrier frequency is $f_{\rm T} = 100 \ \rm kHz$ .





Hints:


Questions

1

Let  $q(t) = q_1(t)+q_2(t)$.  Which geometric figure describes the given locus curve $s_{\rm TP}(t)$?

The locus curve is an ellipse.
The locus curve is a circle.
The locus curve is approximately a semi-circle.
The locus curve is an arc, with an approximate opening angle of  $90^\circ$.

2

Calculate the spectral function $S_{\rm TP}(f)$.  Between what frequencies  $f_{\rm min}$  and  $f_{\rm max}$  do the spectral lines lie?

$f_{\rm min} \ = \ $

$\ \rm kHz$
$f_{\rm max} \ = \ $

$\ \rm kHz$

3

Calculate the weight of the Dirac function at  $f = 0$.

${\rm Re}\big[S_{\rm TP}(f = 0)\big] \ = \ $

${\rm Im}\big[S_{\rm TP}(f = 0)\big] \ = \ $

4

Calculate the weight of the Dirac function at  $f = 1\ \rm kHz$.

${\rm Re}\big[S_{\rm TP}(f = 1 \ \rm kHz)\big] \ = \ $

${\rm Im}\big[S_{\rm TP}(f = 1 \ \rm kHz)\big] \ = \ $

5

Calculate the weight of the  $S_+(f)$–Dirac function at  $f = 98 \ \rm kHz$.

${\rm Re}\big[S_{\rm +}(f = 98 \ \rm kHz)\big] \ = \ $

${\rm Im}\big[S_{\rm +}(f = 98 \ \rm kHz)\big] \ = \ $


Solution

(1)  The third answer is correct:

  • In angle modulation, the complex pointer   $s_{\rm TP}(t)$  always moves on a circular arc with the following opening angle:
$$2 · K_{\rm PM} · q_{\rm max} = 2 \cdot {\rm 1/V} \cdot 1.45 \ \rm V = 2.9 \ \rm rad \approx 166^\circ.$$
  • Using the (admittedly very rough) approximation  $166^\circ \approx 180^\circ$  we indeed get a semicircle.


(2)  In general,   $S_{\rm TP}(f) = B_1(f) ∗ B_2(f)$ holds.

  • Since  $B_1(f)$  is limited to the frequencies   $|f| ≤ 2 \ \rm kHz$  and  $B_2(f)$  is limited to the range   $±3 \ \rm kHz$ , the convolution product is limited to  $|f| ≤ 5 \ \rm kHz$ .
  • It follows that:
$$f_{\rm min} \hspace{0.15cm}\underline {= -5 \ \rm kHz},$$
$$f_{\rm max} \hspace{0.15cm}\underline {=+5 \ \rm kHz}.$$


(3)  The convolution product for frequency   $f = 0$  results from multiplying  $B_1(f)$  with  $B_2(f)$  and summing.

  • Only for   $f = 0$  are both  $B_1(f)$  and  $B_2(f)$  non-zero.
  • Thus, we get:
$$ S_{\rm TP}(f = 0) = B_{1}(f = 0) \cdot B_{2}(f = 0)= 0.8 \cdot 0.9 \hspace{0.15cm}\underline {= 0.72}\hspace{0.2cm}{\rm (rein \hspace{0.15cm} reell)} \hspace{0.05cm}.$$


(4)  Now, before multiplication and summation there needs to be a frequency shift of   $B_2(f)$  to the right – or of  $B_1(f)$  to the left– by   $1 \ \rm kHz$ .  This gives:

$$S_{\rm TP}(f = 1\,{\rm kHz}) = B_{1}(f = -2\,{\rm kHz}) \cdot B_{2}(f = 3\,{\rm kHz}) + B_{1}(f = 1\,{\rm kHz}) \cdot B_{2}(f = 0) = 0.1 \cdot {\rm j} \cdot 0.3 + 0.4 \cdot 0.9\hspace{0.15cm} = 0.36 + {\rm j} \cdot 0.03$$
$$\Rightarrow \hspace{0.3cm} {\rm Re}[S_{\rm TP}(f = 1\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.36} \hspace{0.05cm},\hspace{0.3cm} {\rm Im}[S_{\rm TP}(f = 1\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.03} \hspace{0.05cm}.$$


(5)  The Dirac delta line  $S_+(f = 98 \ \rm kHz)$  corresponds to the   $S_{\rm TP}(f)$–line at  $f = -2 \ \rm kHz$.  This is

$$S_{\rm TP}(f \hspace{-0.05cm}=\hspace{-0.05cm} -2\,{\rm kHz}) \hspace{-0.03cm}=\hspace{-0.03cm} B_{1}(f = -2\,{\rm kHz}) \cdot B_{2}(f \hspace{-0.05cm}=\hspace{-0.05cm} 0) + B_{1}(f \hspace{-0.05cm}=\hspace{-0.05cm} 1\,{\rm kHz}) \cdot B_{2}(f \hspace{-0.05cm}=\hspace{-0.05cm} -3\,{\rm kHz})= 0.1 \cdot 0.9 + 0.4 \cdot {\rm j} \cdot 0.3 \hspace{0.15cm}\hspace{-0.03cm}=\hspace{-0.03cm} 0.09 + {\rm j} \cdot 0.12$$
$$\Rightarrow \hspace{0.3cm} {\rm Re}[S_{\rm +}(f = 98\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.09} \hspace{0.05cm}, \hspace{0.3cm} {\rm Im}[S_{\rm +}(f = 98\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.12} \hspace{0.05cm}.$$