Difference between revisions of "Aufgaben:Exercise 3.3Z: Moments for Triangular PDF"

From LNTwww
Line 87: Line 87:
  
  
'''(2)'''  The   $(k= 2)$  is  $m_2 = 8/3$.  
+
'''(2)'''  The  $(k= 2)$  is  $m_2 = 8/3$.  
*From this follows with <i>Steiner's theorem</i>:
+
*From this follows with&nbsp; "Steiner's theorem":
 
:$$\sigma_x^{\rm 2}={8}/{3}-({4}/{3})^2=\rm {8}/{9}\hspace{0.5cm}\Rightarrow\hspace{0.5cm} \sigma_x\hspace{0.15cm}\underline{\approx \rm 0.943}.$$
 
:$$\sigma_x^{\rm 2}={8}/{3}-({4}/{3})^2=\rm {8}/{9}\hspace{0.5cm}\Rightarrow\hspace{0.5cm} \sigma_x\hspace{0.15cm}\underline{\approx \rm 0.943}.$$
  
  
  
'''(3)'''&nbsp; With &nbsp;$m_1 = 4/3$, &nbsp;$m_2 = 8/3$&nbsp; and &nbsp;$m_3 = 32/5$&nbsp;, the given equation for the third order central moment gives:  &nbsp; $\mu_3 = 64/135 \approx 0.474$.  
+
'''(3)'''&nbsp; With &nbsp;$m_1 = 4/3$, &nbsp;$m_2 = 8/3$&nbsp; and &nbsp;$m_3 = 32/5$,&nbsp; the given equation for the third order central moment gives:  &nbsp; $\mu_3 = 64/135 \approx 0.474$.  
*From this follows for&nbsp; <i>Charlier's skewness</i>:
+
*From this follows for the&nbsp; "Charlier's skewness":
 
:$$S_x=\rm \frac{64/135}{\Big(\sqrt {8/9}\Big)^3}=\frac{\sqrt{8}}{5}\hspace{0.15cm}\underline{\approx 0.566}.$$
 
:$$S_x=\rm \frac{64/135}{\Big(\sqrt {8/9}\Big)^3}=\frac{\sqrt{8}}{5}\hspace{0.15cm}\underline{\approx 0.566}.$$
 +
*Due to the asymmetric PDF:&nbsp; $S_x \ne 0$.
  
*Due to the asymmetric PDF, $S_x \ne 0$.
 
  
  
  
'''(4)'''&nbsp; Correct are <u>the proposed solutions 1, 3 and 4</u>:
+
'''(4)'''&nbsp; Correct are&nbsp; <u>the proposed solutions 1, 3 and 4</u>:
*For symmetric PDF, all odd moments are zero, including the mean&nbsp; $m_y$.  
+
*For symmetric PDF,&nbsp; all odd moments are zero,&nbsp; including the mean&nbsp; $m_y$.  
*Therefore, in terms of randomness&nbsp; $y$&nbsp; there is no difference between the moments&nbsp; $m_k$&nbsp; and the central moments&nbsp; $\mu_k$.
+
*Therefore,&nbsp; according&nbsp; $y$:&nbsp; There is no difference between the moments&nbsp; $m_k$&nbsp; and the central moments&nbsp; $\mu_k$.
*The moments&nbsp; $m_k$&nbsp; with even&nbsp; $k$&nbsp; are the same for the random variables&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; . This is evident from the time averages.
+
*The moments&nbsp; $m_k$&nbsp; with even&nbsp; $k$&nbsp; are the same for the random variables&nbsp; $x$&nbsp; and&nbsp; $y$.&nbsp; This is evident from the time averages:
*Since&nbsp; $x^2(t) = y^2(t)$, for&nbsp; $k = 2n$&nbsp; the moments are also equal:
+
*Since&nbsp; $x^2(t) = y^2(t)$,&nbsp; for&nbsp; $k = 2n$&nbsp; the moments are equal too:
 
:$$m_k=m_{2 n}=\ \text{...}\int [x^2(t)]^n \hspace{0.1cm}{\rm d} x=\ \text{...}\int [y^2(t)]^n \hspace{0.1cm}{\rm d} y.$$
 
:$$m_k=m_{2 n}=\ \text{...}\int [x^2(t)]^n \hspace{0.1cm}{\rm d} x=\ \text{...}\int [y^2(t)]^n \hspace{0.1cm}{\rm d} y.$$
  
Line 114: Line 114:
  
  
'''(6)'''&nbsp; The fourth-order central moment is equal to the moment&nbsp; $m_4$ for symmetric WDF.  
+
'''(6)'''&nbsp; For symmetrical PDF,&nbsp; the fourth-order central moment is equal to the moment&nbsp; $m_4$.  
 
*From the general equation calculated in subtask&nbsp; '''(1)'''&nbsp; one obtains&nbsp; $\mu_4 = 256/15.$  
 
*From the general equation calculated in subtask&nbsp; '''(1)'''&nbsp; one obtains&nbsp; $\mu_4 = 256/15.$  
 
*From this follows for the kurtosis:
 
*From this follows for the kurtosis:
 
:$$K_y=\frac{\mu_{\rm 4}}{\sigma_y^{\rm 4}}=\rm \frac{256/15}{(8/3)^2}\hspace{0.15cm}\underline{=2.4}.$$
 
:$$K_y=\frac{\mu_{\rm 4}}{\sigma_y^{\rm 4}}=\rm \frac{256/15}{(8/3)^2}\hspace{0.15cm}\underline{=2.4}.$$
  
::''Note:'' &nbsp; This numerical value is valid for the triangle WDF in general and lies between the kurtosis values of uniform distribution&nbsp; $(K = 1.8)$&nbsp; and Gaussian distribution&nbsp; $(K = 3)$. This is a quantitative evaluation of the fact that here  
+
::<u>Note:</u> &nbsp; This numerical value is valid for the triangle PDF in general and lies between the kurtosis values of the uniform distribution&nbsp; $(K = 1.8)$&nbsp; and the Gaussian distribution&nbsp; $(K = 3)$. This is a quantitative evaluation of the fact that here  
 
::*the outliers are more pronounced than in the case of a uniformly distributed random size,  
 
::*the outliers are more pronounced than in the case of a uniformly distributed random size,  
 
::*but due to the limitation less pronounced than with Gaussian sizes.
 
::*but due to the limitation less pronounced than with Gaussian sizes.
  
Then we will prove that the asymmetric triangular WDF $f_x(x)$ also has the same kurtosis as shown in the upper sketch on the data sheet:
+
*Then we will prove that the asymmetric triangular PDF&nbsp; $f_x(x)$&nbsp; has the same kurtosis as shown in the upper sketch on the data sheet:
 
: $$\mu_{ 4} = m_{\rm 4}- 4\cdot m_{\rm 3}\cdot m_{\rm 1}+ 6\cdot m_{\rm 2}\cdot m_{\rm 1}^{\rm 2}- 3\cdot m_{\rm 1}^{\rm 4}= \frac{256}{15} - 4 \cdot \frac{32}{5}\cdot \frac{4}{3} + 6 \cdot \frac{8}{3}\cdot \left(\frac{4}{3}\right)^2 -3 \cdot \left(\frac{4}{3}\right)^4 =\frac{256}{15 \cdot 9}$$
 
: $$\mu_{ 4} = m_{\rm 4}- 4\cdot m_{\rm 3}\cdot m_{\rm 1}+ 6\cdot m_{\rm 2}\cdot m_{\rm 1}^{\rm 2}- 3\cdot m_{\rm 1}^{\rm 4}= \frac{256}{15} - 4 \cdot \frac{32}{5}\cdot \frac{4}{3} + 6 \cdot \frac{8}{3}\cdot \left(\frac{4}{3}\right)^2 -3 \cdot \left(\frac{4}{3}\right)^4 =\frac{256}{15 \cdot 9}$$
  

Revision as of 16:49, 5 January 2022

Two triangular PDFs

We consider in this exercise two random signals  $x(t)$  and  $y(t)$  each with triangular PDF,  namely

  • the one-sided triangular PDF according to the upper graph:
$$f_x(x)=\left\{ \begin{array}{*{4}{c}} 0.5 \cdot (1-{ x}/{\rm 4}) & \rm for\hspace{0.2cm}{\rm 0 \le {\it x} \le 4},\\\rm 0 & \rm else. \end{array} \right.$$
  • the two-sided triangular PDF according to the graph below:
$$ f_y(y)=\left\{ \begin{array}{*{4}{c}} 0.25 \cdot (1-{ |y|}/{\rm 4}) & \rm for\hspace{0.2cm}{ -4 \le {\it y} \le \rm 4},\\\rm 0 & \rm else. \end{array} \right.$$

To solve this problem,  consider the equation for the central moments:

$$\mu_k=\sum\limits_{\kappa = \rm 0}^{\it k}\left({k} \atop {\kappa}\right)\cdot m_k\cdot(-m_{\rm 1})^{k - \kappa}.$$

Specifically,  this equation yields the following results:

$$\mu_{\rm 1}=0,\hspace{0.5cm}\mu_{\rm 2}=\it m_{\rm 2}-\it m_{\rm 1}^{\rm 2},\hspace{0.5cm}\mu_{\rm 3}=\it m_{\rm 3}-\rm 3\cdot\it m_{\rm 2}\cdot \it m_{\rm 1} {\rm +}\rm 2\cdot\it m_{\rm 1}^{\rm 3},$$
$$\mu_{\rm 4}=\it m_{\rm 4}-\rm 4\cdot\it m_{\rm 3}\cdot \it m_{\rm 1}\rm +6\cdot\it m_{\rm 2}\cdot\it m_{\rm 1}^{\rm 2}-\rm 3\cdot\it m_{\rm 1}^{\rm 4}.$$

From the central moments of higher order one can derive among others:

  • the  "Charlier's skewness"  $S = {\mu_3}/{\sigma^3}\hspace{0.05cm},$
  • the  "kurtosis"  $K = {\mu_4}/{\sigma^4}\hspace{0.05cm}.$



Hints:



Questions

1

Calculate from the present PDF  $f_x(x)$  the  $k$-th order moment.  What value results for the linear mean  $m_x = m_1$?

$m_x \ = \ $

2

What is the quadratic mean and the rms  $\sigma_x$  of the random variable  $x$?

$\sigma_x\ = \ $

3

For random variable  $x$:  What is the Charlier's skewness  $S_x = \mu_3/\sigma_x^3$?  Why is  $S_x \ne 0$?

$S_x \ = \ $

4

Which statements are true for the symmetrically distributed random variable  $y$?

All moments with odd  $k$  are  $m_k =0$.
All moments with even  $k$  are  $m_k =0$.
All moments  $m_k$  with even  $k$  are calculated as in subtask  (1).
The central moments   $\mu_k$  are equal to the non-centered moments  $m_k$.

5

Calculate the rms of the random variable  $y$.

$\sigma_y \ = \ $

6

What is the kurtosis  $K_y$  of the random variable  $y$?  Interpret the result.

$K_y \ = \ $


Solution

(1)  For the  $k$–th order moment of the random variable  $x$  holds:

$$m_k=1/2\cdot \int_{\rm 0}^{\rm 4} x^k\cdot ( 1-\frac{\it x}{\rm 4}) \hspace{0.1cm}{\rm d}x.$$
  • This leads to the result:
$$m_k=\frac{x^{ k+ 1}}{ 2\cdot ( k+ 1)}\Bigg|_{\rm 0}^{\rm 4}-\frac{x^{ k+2}}{8\cdot ( k+2)}\Bigg|_{\rm 0}^{\rm 4}=\frac{\rm 2\cdot \rm 4^{\it k}}{(\it k\rm +1)\cdot (\it k\rm + 2)}.$$
  • From this we obtain for the linear mean  $(k= 1)$:
$$m_x=\rm {4}/{3}\hspace{0.15cm}\underline{=1.333}.$$


(2)  The  $(k= 2)$  is  $m_2 = 8/3$.

  • From this follows with  "Steiner's theorem":
$$\sigma_x^{\rm 2}={8}/{3}-({4}/{3})^2=\rm {8}/{9}\hspace{0.5cm}\Rightarrow\hspace{0.5cm} \sigma_x\hspace{0.15cm}\underline{\approx \rm 0.943}.$$


(3)  With  $m_1 = 4/3$,  $m_2 = 8/3$  and  $m_3 = 32/5$,  the given equation for the third order central moment gives:   $\mu_3 = 64/135 \approx 0.474$.

  • From this follows for the  "Charlier's skewness":
$$S_x=\rm \frac{64/135}{\Big(\sqrt {8/9}\Big)^3}=\frac{\sqrt{8}}{5}\hspace{0.15cm}\underline{\approx 0.566}.$$
  • Due to the asymmetric PDF:  $S_x \ne 0$.



(4)  Correct are  the proposed solutions 1, 3 and 4:

  • For symmetric PDF,  all odd moments are zero,  including the mean  $m_y$.
  • Therefore,  according  $y$:  There is no difference between the moments  $m_k$  and the central moments  $\mu_k$.
  • The moments  $m_k$  with even  $k$  are the same for the random variables  $x$  and  $y$.  This is evident from the time averages:
  • Since  $x^2(t) = y^2(t)$,  for  $k = 2n$  the moments are equal too:
$$m_k=m_{2 n}=\ \text{...}\int [x^2(t)]^n \hspace{0.1cm}{\rm d} x=\ \text{...}\int [y^2(t)]^n \hspace{0.1cm}{\rm d} y.$$


(5)  With the result of the subtask  (2)  holds:

$$m_2=\mu_{\rm 2}=\sigma_y^2=\rm {8}/{3} = 2.667\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_y\hspace{0.15cm}\underline{=1.633}.$$


(6)  For symmetrical PDF,  the fourth-order central moment is equal to the moment  $m_4$.

  • From the general equation calculated in subtask  (1)  one obtains  $\mu_4 = 256/15.$
  • From this follows for the kurtosis:
$$K_y=\frac{\mu_{\rm 4}}{\sigma_y^{\rm 4}}=\rm \frac{256/15}{(8/3)^2}\hspace{0.15cm}\underline{=2.4}.$$
Note:   This numerical value is valid for the triangle PDF in general and lies between the kurtosis values of the uniform distribution  $(K = 1.8)$  and the Gaussian distribution  $(K = 3)$. This is a quantitative evaluation of the fact that here
  • the outliers are more pronounced than in the case of a uniformly distributed random size,
  • but due to the limitation less pronounced than with Gaussian sizes.
  • Then we will prove that the asymmetric triangular PDF  $f_x(x)$  has the same kurtosis as shown in the upper sketch on the data sheet:
$$\mu_{ 4} = m_{\rm 4}- 4\cdot m_{\rm 3}\cdot m_{\rm 1}+ 6\cdot m_{\rm 2}\cdot m_{\rm 1}^{\rm 2}- 3\cdot m_{\rm 1}^{\rm 4}= \frac{256}{15} - 4 \cdot \frac{32}{5}\cdot \frac{4}{3} + 6 \cdot \frac{8}{3}\cdot \left(\frac{4}{3}\right)^2 -3 \cdot \left(\frac{4}{3}\right)^4 =\frac{256}{15 \cdot 9}$$
  • With the result of the subtask  (3)    ⇒   $\sigma_x^2 = 8/9$  it follows:
$$ K_x = \frac{{256}/(15 \cdot 9)}{8/9 \cdot 8/9} = 2.4.$$