Difference between revisions of "Aufgaben:Exercise 3.4: Systematic Convolution Codes"

From LNTwww
Line 2: Line 2:
  
 
[[File:EN_KC_A_3_4.png|right|frame|Predefined filter structures]]
 
[[File:EN_KC_A_3_4.png|right|frame|Predefined filter structures]]
One speaks of a systematic convolutional code of rate  $R = 1/2$   ⇒   $k = 1, \ n = 2$, if the code bit  $x_i^{(1)}$  is equal to the currently applied information bit  $u_i$ .  
+
One speaks of a  "systematic convolutional code"  of rate  $R = 1/2$   ⇒   $k = 1, \ n = 2$,  if the code bit  $x_i^{(1)}$  is equal to the currently applied information bit  $u_i$.  
  
The transfer function matrix of such a code is:
+
*The transfer function matrix of such a code is:
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
The encoder  $\rm A$  shown in the upper graph is certainly not systematic, since for this  $G^{(1)}(D) ≠ 1$  holds. To derive the matrix  $\mathbf{G}(D)$  we refer to a  [[Channel_Coding/Algebraic_and_Polynomial_Description#Application_of_the_D-transform_to_rate-1. 2Fn-convolution_encoders|"earlier example"]], where for our standard rate 1/2 encoder with memory  $m = 2$  the transfer function matrix was determined:
+
*The encoder  $\rm A$  shown in the upper graph is certainly not systematic,  since for this  $G^{(1)}(D) ≠ 1$  holds.  To derive the matrix  $\mathbf{G}(D)$  we refer to an  [[Channel_Coding/Algebraic_and_Polynomial_Description#Application_of_the_D-transform_to_rate-1. 2Fn-convolution_encoders|$\text{earlier example}$]],  where for our standard rate–1/2  encoder with memory  $m = 2$  the transfer function matrix was determined:
 
:$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) = \big ( \hspace{0.05cm} 1 + D + D^2\hspace{0.05cm} , \hspace{0.2cm} 1 +  D^2 \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) = \big ( \hspace{0.05cm} 1 + D + D^2\hspace{0.05cm} , \hspace{0.2cm} 1 +  D^2 \hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
The encoder  $\rm A$  differs from this example only by swapping the two outputs.  
+
:The encoder  $\rm A$  differs from this example only by swapping the two outputs.  
 
*If the transfer function matrix of a code is
 
*If the transfer function matrix of a code is
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big )  
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
then the equivalent systematic representation of this rate 1/2 convolutional code holds in general:
+
:then the equivalent systematic representation of this rate–1/2  convolutional code holds in general:
 
:$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {G^{(2)}(D)}/{G^{(1)}(D)} \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {G^{(2)}(D)}/{G^{(1)}(D)} \hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
In subtask '''(3)''', check which of the systematic arrangements is equivalent to encoder  $\rm A$ ?  
+
In subtask  '''(3)''',  check which of the systematic arrangements is equivalent to encoder  $\rm A$?  
 
*Either encoder  $\rm B$,
 
*Either encoder  $\rm B$,
*or encoder  $\rm C$   
+
 
 +
*or encoder  $\rm C$ 
 +
 
*or both.  
 
*or both.  
  
Line 32: Line 34:
  
  
 +
Hints:
 +
* This exercise belongs to the chapter  [[Channel_Coding/Algebraic_and_Polynomial_Description| "Algebraic and Polynomial Description"]].
  
 
+
* Reference is made in particular to the sections 
Hints:
+
:* [[Channel_Coding/Algebraic_and_Polynomial_Description#Transfer_Function_Matrix|"Transfer Function Matrix"]]  and 
* This exercise belongs to the chapter  [[Channel_Coding/Algebraic_and_Polynomial_Description| Algebraic and Polynomial Description]].
+
:* [[Channel_Coding/Algebraic_and_Polynomial_Description#Equivalent_systematic_convolutional_code|"Equivalent systematic convolutional code"]].
* Reference is made in particular to the pages 
 
:: [[Channel_Coding/Algebraic_and_Polynomial_Description#Transfer_Function_Matrix|"Transfer Function Matrix"]]  and 
 
:: [[Channel_Coding/Algebraic_and_Polynomial_Description#Equivalent_systematic_convolutional_code|"Equivalent systematic convolutional code"]].
 
  
  
Line 57: Line 58:
  
 
{Which encoder is equivalent to  $\rm A$  and systematic?
 
{Which encoder is equivalent to  $\rm A$  and systematic?
|type="()"}
+
|type="[]"}
 
- Encoder  $\rm B$ ,
 
- Encoder  $\rm B$ ,
 
+ encoder  $\rm C$ .
 
+ encoder  $\rm C$ .

Revision as of 19:06, 10 November 2022

Predefined filter structures

One speaks of a  "systematic convolutional code"  of rate  $R = 1/2$   ⇒   $k = 1, \ n = 2$,  if the code bit  $x_i^{(1)}$  is equal to the currently applied information bit  $u_i$.

  • The transfer function matrix of such a code is:
$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) \hspace{0.05cm}.$$
  • The encoder  $\rm A$  shown in the upper graph is certainly not systematic,  since for this  $G^{(1)}(D) ≠ 1$  holds.  To derive the matrix  $\mathbf{G}(D)$  we refer to an  $\text{earlier example}$,  where for our standard rate–1/2  encoder with memory  $m = 2$  the transfer function matrix was determined:
$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) = \big ( \hspace{0.05cm} 1 + D + D^2\hspace{0.05cm} , \hspace{0.2cm} 1 + D^2 \hspace{0.05cm}\big ) \hspace{0.05cm}.$$
The encoder  $\rm A$  differs from this example only by swapping the two outputs.
  • If the transfer function matrix of a code is
$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) \hspace{0.05cm},$$
then the equivalent systematic representation of this rate–1/2  convolutional code holds in general:
$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {G^{(2)}(D)}/{G^{(1)}(D)} \hspace{0.05cm}\big ) \hspace{0.05cm}.$$


In subtask  (3),  check which of the systematic arrangements is equivalent to encoder  $\rm A$?

  • Either encoder  $\rm B$,
  • or encoder  $\rm C$ 
  • or both.




Hints:

  • Reference is made in particular to the sections 


Questions

1

What is the transfer function matrix of  $\rm A$?

$\mathbf{G}(D) = (1 + D^2, \ 1 + D + D^2)$,
$\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$,
$\mathbf{G}(D) = (1, \ 1 + D + D^2)$.

2

What is the equivalent systematic transfer function matrix?

$\mathbf{G}_{\rm sys}(D) = (1 + D + D^2, \ 1 + D^2)$,
$\mathbf{G}_{\rm sys}(D) = (1, \ 1 + D + D^2)$,
$\mathbf{G}_{\rm sys}(D) = (1, \ (1 + D + D^2)/(1 + D^2))$.

3

Which encoder is equivalent to  $\rm A$  and systematic?

Encoder  $\rm B$ ,
encoder  $\rm C$ .


Solution

(1)  Correct is the proposed solution 1:

  • Proposition 2 would result if the two outputs were swapped, that is, for the "Rate 1/2 standard code" mostly considered in the theory section.
  • Proposition 3 applies to a systematic code ⇒ $\underline{x}^{(1)} = \underline{u}$. However, the coder considered here  $\rm A$  does not exhibit this property.


(2)  To go from a nonsystematic $(n, \ k)$ code with matrix $\mathbf{G}(D)$ to the equivalent systematic code   ⇒   matrix $\mathbf{G}_{\rm sys}(D)$,
one must generally split $\mathbf{G}(D)$ into a $k × k$ matrix $\mathbf{T}(D)$ and a remainder matrix $\mathbf{Q}(D)$.

  • The desired result is then with the $k × k$ identity matrix $\mathbf{I}_k$:
$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} {\boldsymbol{\rm I}}_k\hspace{0.05cm} ; \hspace{0.1cm} {\boldsymbol{\rm T}}^{-1}(D) \cdot {\boldsymbol{\rm Q}}(D)\hspace{0.05cm}\big ) \hspace{0.05cm}.$$
  • We assume here the $\mathbf{G}(D)$ matrix for the coder  $\rm A$ .
  • Because $k = 1$ here both $\mathbf{T}(D)$ and $\mathbf{Q}(D)$ have dimension $1 × 1$, so strictly speaking they are not matrices at all:
$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} {\boldsymbol{\rm T}}(D)\hspace{0.05cm} ; \hspace{0.2cm} {\boldsymbol{\rm Q}}(D)\hspace{0.05cm}\big ) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\boldsymbol{\rm T}}(D) = \big ( 1+D^2\big )\hspace{0.05cm} , \hspace{0.2cm} {\boldsymbol{\rm Q}}(D) = \big ( 1+D+D^2\big )\hspace{0.05cm} .$$
  • For the two elements of the systematic transfer function matrix, we obtain:
$$G^{(1)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\boldsymbol{\rm T}}(D) \cdot {\boldsymbol{\rm T}}^{-1}(D) = 1 C,\hspace{0.8cm} G^{(2)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\boldsymbol{\rm Q}}(D) \cdot {\boldsymbol{\rm T}}^{-1}(D) = \frac{1+D+D^2}{1+D^2}$$
$$\Rightarrow \hspace{0.3cm}{\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.1cm} \frac{1+D+D^2}{1+D^2} \hspace{0.05cm}\big ) \hspace{0.05cm}.$$

So the last proposed solution is correct:

  • Proposed solution 1 does not describe a systematic code.
  • A code according to solution suggestion 2 is systematic, but not equivalent to the coder  $\rm A$  according to the given circuit and transfer function matrix $\mathbf{G}(D)$.


(3)  The generator function matrix of encoder  $\rm B$  is:

$${\boldsymbol{\rm G}}_{\rm B}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {1+D+D^2} \hspace{0.05cm}\big ) \hspace{0.05cm}.$$
  • So this encoder is not equivalent to the encoder  $\rm A$.
  • Let us now consider the encoder  $\rm C$. Here the second matrix element of $\mathbf{G}(D)$ holds:
$$w_i \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_i + w_{i-2} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {U}(D) = W(D) \cdot (1 + D^2 ) \hspace{0.05cm},\hspace{0.8cm} x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} w_i + w_{i-1} + w_{i-2} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {X}^{(2)}(D) = W(D) \cdot (1 +D + D^2 )$$
$$\Rightarrow \hspace{0.3cm} G^{(2)}(D) = \frac{{X}^{(2)}(D)}{{U}(D)} = \frac{1+D+D^2}{1+D^2}\hspace{0.05cm}.$$

This corresponds exactly to the result of the subtask (2)'  ⇒  Proposed solution 2.