Difference between revisions of "Aufgaben:Exercise 3.4: Trapezoidal Spectrum and Pulse"

From LNTwww
 
(41 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=*Buch*/*Kapitel*
+
{{quiz-Header|Buchseite=Signal_Representation/Fourier_Transform_Laws
 
}}
 
}}
  
[[File:P_ID508__Sig_A_3_4.png|250px|right|Trapezspektrum und -impuls (Aufgabe A3.4)]]
+
[[File:P_ID508__Sig_A_3_4.png|250px|right|frame|Trapezoidal spectrum & trapezoidal pulse]]
  
Wir betrachten hier eine trapezförmige Spektralfunktion $X(f)$ gemäß der oberen Grafik, die durch die drei Parameter $X_0$, $f_1$ und $f_2$ vollständig beschrieben wird. Für die Eckfrequenzen gelte $f_2 > 0$ und $0 \geq f_1 \geq f_2$.
+
We consider here a trapezoidal spectral function  $X(f)$  according to the upper graph, which is completely described by the three parameters  $X_0$,  $f_1$  and  $f_2$.  For the two corner frequencies,   $f_2 > 0$  and  $0 \leq f_1 \leq f_2$ always apply.
Anstelle der Eckfrequenzen $f_1$ und $f_2$ können auch die beiden folgenden Beschreibungsgrößen verwendet werden:
 
*die äquivalente Bandbreite:
 
$$\Delta f = f_1  + f_2,$$
 
*der so genannte Rolloff-Faktor (im Frequenzbereich):
 
$$r_f = \frac{{f_2  - f_1 }}{{f_2  + f_1 }}.$$
 
  
 +
Instead of the corner frequencies  $f_1$  and  $f_2$ , the following two descriptive variables can also be used:
 +
*the  [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|equivalent bandwidth]]:
 +
:$$\Delta f = f_1  + f_2,$$
 +
*the so-called  [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen#Trapez.E2.80.93Tiefpass|rolloff factor]]  (in the frequency domain):
 +
:$$r_{\hspace{-0.05cm}f} = \frac{ {f_2  - f_1 }}{ {f_2  + f_1 }}.$$
  
Mit diesen Größen lautet die dazugehörige Zeitfunktion (siehe Grafik in der Mitte):
+
With these quantities, the associated time function (see middle graph) is:
 
   
 
   
$$x( t ) = X_0  \cdot \Delta f \cdot {\mathop{\rm si}\nolimits} ( {{\rm \pi}  \cdot \Delta f \cdot t} ) \cdot {\mathop{\rm si}\nolimits} ( {{\rm \pi}  \cdot  r_f \cdot \Delta f\cdot t} ).$$
+
:$$x( t ) = X_0  \cdot \Delta f \cdot {\mathop{\rm si}\nolimits} ( { {\rm \pi}  \cdot \Delta f \cdot t} ) \cdot {\mathop{\rm si}\nolimits} ( { {\rm \pi}  \cdot  r_{\hspace{-0.05cm}f} \cdot \Delta f\cdot t} ).$$
  
Hierbei ist $\text{si}(x) = \text{sin}(x)/x$ die so genannte Spaltfunktion.
+
Here  $\text{si}(x) = \text{sin}(x)/x$  is the so-called  "splitting function".
In diesem Beispiel sollen die Zahlenwerte $X_0 = 10^{–3}$ V/Hz, $f_1 = 1$ kHz und $f_2 = 3$ kHz verwendet werden. Die Zeit $T = 1/\Delta f$ dient lediglich zu Normierungszwecken.
 
  
Ab Aufgabe 3) wird ein trapezförmiges Signal $y(t)$ betrachtet, das formgleich mit dem Spektrum $X(f)$ ist. Als Beschreibungsgrößen können hier verwendet werden:
+
In this example, the numerical values  $X_0 = 10^{–3}\,\text{V/Hz}$,  $f_1 = 1\,\text{kHz}$  and  $f_2 = 3\,\text{kHz}$  are to be used.  The time  $T = 1/\Delta f$  is only used for normative purpose.
die Impulsamplitude $y_0 = y(t = 0)$,
+
 
die äquivalente Impulsdauer (definiert über das flächengleiche Rechteck):
+
In the  subtask  '''(3)'''   a trapezoidal signal  $y(t)$  is considered, which is identical in shape to the spectrum  $X(f)$.
 +
 
 +
The following can be used here as descriptive variables:
 +
*the pulse amplitude  $y_0 = y(t = 0)$,
 +
*the  [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|equivalent pulse duration]]  (defined via the rectangle–in–time with the same area):
 +
 +
:$$\Delta t = t_1  + t_2,$$
 +
 
 +
*the rolloff factor (in the time domain) with comparable definition as  $r_f$:
 
   
 
   
$$\Delta t = t_1  + t_2,$$
+
:$$r_{\hspace{-0.05cm}t} = \frac{ {t_2  - t_1 }}{ {t_2 + t_1 }}.$$
 +
 
 +
Let be  $y_0 = 4\,\text{V}$,  $\Delta t = 1\,\text{ms}$  and  $r_t = 0.5$.
 +
 
 +
 
 +
 
 +
 
 +
 
  
der Rolloff-Faktor (im Zeitbereich):
+
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Transform_Theorems|Fourier Transform Theorems]].
 +
*Use the   [[Signal_Representation/Fourier_Transform_Theorems#Duality_Theorem|Duality Theorem]]  and the  [[Signal_Representation/Fourier_Transform_Theorems#Similarity_Theorem|Similarity Theorem]].
 
   
 
   
$$r_t = \frac{{t_2 - t_1 }}{{t_2  + t_1 }}.$$
+
*You can check your results using the two interactive applets  
 +
:[[Applets:Pulses_and_Spectra|Pulses and Spectra]],  
 +
:[[Applets:Frequency_%26_Impulse_Responses|Frequency & Impulse Responses]].
  
Es gelte $y_0 = 4$ V, $\Delta t = 1$ ms und $r_t = 0.5$.
 
  
  
Hinweis: Diese Aufgabe soll unter Verwendung von Vertauschungssatz und Ähnlichkeitssatz gelöst werden. Sie können Ihre Ergebnisse anhand zweier Interaktionsmodule überprüfen:
 
*Zeitfunktion und zugehörige Spektralfunktion
 
*Frequenzgang und zugehörige Impulsantwort
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Wie groß sind bei den gegebenen Parametern die äquivalente Bandbreite und der Rolloff-Faktor des Spektrums $X(f)$?
+
{What are the equivalent bandwidth and the rolloff factor of the spectrum&nbsp; $X(f)$&nbsp; for the given parameters?
 
|type="{}"}
 
|type="{}"}
$\Delta f =$ { 4 } kHz
+
$\Delta f \ = \ $ { 4 3% } &nbsp;$\text{kHz}$
$r_f = { 0.5 }  
+
$r_{\hspace{-0.05cm}f} \hspace{0.35cm} = \ $ { 0.5 3% }  
  
{Wie groß sind die Signalwerte von $x(t)$ bei $t = 0$, $t = T/2$ und $t = T$?
+
{What are the signal values of&nbsp; $x(t)$&nbsp; at&nbsp; $t = 0$,&nbsp; $t = T$&nbsp; and&nbsp; $t = T/2$?
 
|type="{}"}
 
|type="{}"}
$x(t=0) =$ { 4 } V
+
$x(t=0)\hspace{0.2cm} = \ $ { 4 3% } &nbsp;$\text{V}$
$x(t=T/2) =$ { 2.293 3% } V
+
$x(t=T)\ = \ $ { 0. } &nbsp;$\text{V}$
$x(t=T) =$ { 0 } V
+
$x(t=T/2)\ = \ $ { 2.293 3% } &nbsp;$\text{V}$
  
{Wie lautet das Spektrum $Y(f)$ des Trapezimpulses mit $y_0 = 4$ V, $\Delta t = 1$ ms, $r_t = 0.5$. Wie groß sind die Spektralwerte bei $f$ = 0, 500 Hz und 1 kHz?
+
{What is the spectrum&nbsp; $Y(f)$&nbsp; of the trapezoidal pulse with&nbsp; $y_0 = 4\,\text{V}$,&nbsp; $\Delta t = 1\,\text{ms}$&nbsp;  and&nbsp; $r_t = 0.5$? <br>What are the spectral values at the given frequencies?
 
|type="{}"}
 
|type="{}"}
$Y(f = 0) =$ { 4 } mV/kHz
+
$Y(f = 0)\hspace{0.2cm} = \ $ { 4 3% } &nbsp;$\text{mV/Hz}$
$Y(f = 0.5 \text{kHz}) =$ { 2.293 3% } mV/Hz
+
$Y(f = 0.5 \,\text{kHz})\ = \ $ { 2.293 3% } &nbsp;$\text{mV/Hz}$
$Y(f = 1 \text{kHz}) =$ { 0 } mV/Hz
+
$Y(f = 1.0 \,\text{kHz})\ = \ $ { 0. } &nbsp;$\text{mV/Hz}$
  
{Welche Spektralwerte ergeben sich mit $y_0 = 8$ V, $\Delta t = 0.5$ ms und $r_t = 0.5$?
+
{Which spectral values result with&nbsp; $y_0 = 8\,\text{V}$,&nbsp; $\Delta t = 0.5\,\text{ms }$&nbsp; and&nbsp; $r_t = 0.5$?
 
|type="{}"}
 
|type="{}"}
$Y(f=0) =$ { 4 } mV/Hz
+
$Y(f=0)\hspace{0.2cm}= \ $ { 4 3% } &nbsp;$\text{mV/Hz}$
$Y(f=1\text{kHz}) =$ { 2.293 3% } mV/Hz
+
$Y(f=1.0 \,\text{kHz})\ = \ $ { 2.293 3% } &nbsp;$\text{mV/Hz}$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
  
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Die äquivalente Bandbreite ist per Definition gleich der Breite des flächengleichen Rechtecks:
+
'''(1)'''&nbsp; The equivalent bandwidth is (by definition) equal to the width of the equal-area rectangle:
 
   
 
   
Für den Rolloff-Faktor gilt:
+
:$$\Delta f = f_1  + f_2  \hspace{0.15 cm}\underline{= 4\;{\rm{kHz}}}{\rm{.}}$$
 +
*For the rolloff factor holds:
 
   
 
   
'''2.''' Der Maximalwert des Impulses $x(t)$ tritt zum Zeitpunkt $t = 0$ auf:   $x_0 = X_0 \cdot \Delta f = 4$ V.
+
:$${ {r_{\hspace{-0.05cm}f} = }}\frac{ {f_2  - f_1 }}{ {f_2  + f_1 }}\hspace{0.15 cm}\underline{ = 0.5}.$$
Zum Zeitpunkt $t = T = 1/\Delta f$ gilt aufgrund von $\text{si}(\pi) = 0$:
+
 
 +
 
 +
'''(2)'''&nbsp; The maximum value of the pulse&nbsp; $x(t)$&nbsp; occurs at time&nbsp; $t = 0$&nbsp;:
 +
 
 +
:$$x_0 = x(t = 0) = X_0 \cdot \Delta f \hspace{0.15 cm}\underline{= 4\, \text{V}}.$$
 +
 
 +
*At time&nbsp; $t = T = 1/\Delta f$&nbsp; applies due to&nbsp; $\text{si}(\pi) = 0$:
 
   
 
   
Auch bei allen Vielfachen von $T$ weist $x(t)$ Nulldurchgänge auf. Zum Zeitpunkt $t = T/2$ gilt:
+
:$$x( {t = T} ) = x_0  \cdot {\mathop{\rm si}\nolimits} ( {\rm{\pi }} ) \cdot {\mathop{\rm si}\nolimits} ( { { {\rm{\pi }}}/{2}} )\hspace{0.15 cm}\underline{ = 0}.$$
 +
 
 +
*Also at all multiples of&nbsp; $T$:&nbsp; &nbsp; $x(t)$&nbsp; exhibits zero crossings.&nbsp; At time&nbsp; $t = T/2$&nbsp; holds:
 
   
 
   
'''3.''' Die zum trapezförmigen Spektrum $X(f)$ zugehörige Zeitfunktion lautet (siehe Angabe):
+
:$$x( {t = T/2} ) = x_0  \cdot {\mathop{\rm si}\nolimits} ( { { {\rm{\pi }}}/{2}} ) \cdot {\mathop{\rm si}\nolimits}( { { {\rm{\pi }}}/{4}} ) = x_0  \cdot \frac{ { 1 \cdot \sqrt 2 /2}}{ { {\rm{\pi /}}2 \cdot {\rm{\pi /4}}}} = x_0  \cdot \frac{ {4 \cdot \sqrt 2 }}{ { {\rm{\pi }}^{\rm{2}} }} \hspace{0.15 cm}\underline{= 2.293\;{\rm{V}}}{\rm{.}}$$
 +
 
 +
 
 +
'''(3)'''&nbsp; The time function associated with the trapezoidal spectrum&nbsp; $X(f)$&nbsp; is according to the specification:
 
   
 
   
Da sowohl $X(f)$ als auch $x(t)$ reell sind und $y(t)$ formgleich mit $X(f)$ ist, erhält man unter Berücksichtigung aller Äquivalenzen für die Spektralfunktion des Trapezimpulses:
+
:$$x( t ) = X_0  \cdot \Delta f \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot \Delta f \cdot t} ) \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot r_f \cdot \Delta f \cdot t} ).$$
 +
 
 +
*Since both&nbsp; $X(f)$&nbsp; and&nbsp; $x(t)$&nbsp; are real and, moreover,&nbsp; $y(t)$&nbsp; is of the same form as&nbsp; $X(f),$&nbsp; we obtain, taking into account all equivalences for the spectral function of the trapezoidal pulse:
 
   
 
   
Insbesondere gilt:
+
:$$Y( f ) = y_0  \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot \Delta t \cdot f} ) \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot r_t \cdot \Delta t \cdot f} ).$$
 +
 
 +
*In particular, holds:
 
   
 
   
 +
:$$Y( {f = 0} ) = y_0  \cdot \Delta t \hspace{0.15 cm}\underline{= 4 \;{\rm{mV/Hz}}}{\rm{,}}$$
 +
 +
:$$Y( {f = 0.5\;{\rm{kHz}}} ) = y_0  \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{4}} ) \hspace{0.15 cm}\underline{= 2.293  \;{\rm{mV/Hz}}}{\rm{,}}$$
 +
 +
:$$Y( {f = 1\;{\rm{kHz}}} ) = y_0  \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {\rm{\pi }} ) \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} )\hspace{0.15 cm}\underline{ = 0}\;{\rm{.}}$$
 +
 +
 +
'''(4)'''&nbsp; The spectral value at frequency&nbsp; $f = 0$&nbsp; is not changed: &nbsp;
 +
:$$Y_0 = y_0 \cdot \Delta t \hspace{0.15 cm}\underline{= 4 \,\rm{mV/Hz}}.$$
 +
 +
*But since the time function is now only half as wide, the spectrum widens by a factor of&nbsp; $2$:
 +
 +
:$$Y( {f = 1\;{\rm{kHz}}} ) = Y_0  \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{4}} ) \hspace{0.15 cm}\underline{= 2.293\,{\rm{mV/Hz}}}{\rm{.}}$$
 
   
 
   
+
*In subtask&nbsp; '''(3)'''&nbsp; this spectral value occurred at the frequency&nbsp; $f = 0.5\,\rm{kHz}$&nbsp;.
'''4.''' Der Spektralwert bei der Frequenz $f = 0$ wird nicht verändert: $Y_0 = y_0 \cdot \Delta t = 4 \cdot 10^{–3}$ V/Hz. Da nun die Zeitfunktion nur halb so breit ist, verbreitert sich das Spektrum um den Faktor 2:
 
 
In der Teilaufgabe 3) ist dieser Spektralwert bei der Frequenz $f = 0.5$ kHz aufgetreten.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^3. Aperiodische Signale - Impulse^]]
+
[[Category:Signal Representation: Exercises|^3.3 Fourier Transform Theorems^]]

Latest revision as of 15:17, 24 May 2021

Trapezoidal spectrum & trapezoidal pulse

We consider here a trapezoidal spectral function  $X(f)$  according to the upper graph, which is completely described by the three parameters  $X_0$,  $f_1$  and  $f_2$.  For the two corner frequencies,  $f_2 > 0$  and  $0 \leq f_1 \leq f_2$ always apply.

Instead of the corner frequencies  $f_1$  and  $f_2$ , the following two descriptive variables can also be used:

$$\Delta f = f_1 + f_2,$$
$$r_{\hspace{-0.05cm}f} = \frac{ {f_2 - f_1 }}{ {f_2 + f_1 }}.$$

With these quantities, the associated time function (see middle graph) is:

$$x( t ) = X_0 \cdot \Delta f \cdot {\mathop{\rm si}\nolimits} ( { {\rm \pi} \cdot \Delta f \cdot t} ) \cdot {\mathop{\rm si}\nolimits} ( { {\rm \pi} \cdot r_{\hspace{-0.05cm}f} \cdot \Delta f\cdot t} ).$$

Here  $\text{si}(x) = \text{sin}(x)/x$  is the so-called  "splitting function".

In this example, the numerical values  $X_0 = 10^{–3}\,\text{V/Hz}$,  $f_1 = 1\,\text{kHz}$  and  $f_2 = 3\,\text{kHz}$  are to be used.  The time  $T = 1/\Delta f$  is only used for normative purpose.

In the subtask  (3)  a trapezoidal signal  $y(t)$  is considered, which is identical in shape to the spectrum  $X(f)$.

The following can be used here as descriptive variables:

  • the pulse amplitude  $y_0 = y(t = 0)$,
  • the  equivalent pulse duration  (defined via the rectangle–in–time with the same area):
$$\Delta t = t_1 + t_2,$$
  • the rolloff factor (in the time domain) with comparable definition as  $r_f$:
$$r_{\hspace{-0.05cm}t} = \frac{ {t_2 - t_1 }}{ {t_2 + t_1 }}.$$

Let be  $y_0 = 4\,\text{V}$,  $\Delta t = 1\,\text{ms}$  and  $r_t = 0.5$.




Hints:

  • You can check your results using the two interactive applets  
Pulses and Spectra,
Frequency & Impulse Responses.



Questions

1

What are the equivalent bandwidth and the rolloff factor of the spectrum  $X(f)$  for the given parameters?

$\Delta f \ = \ $

 $\text{kHz}$
$r_{\hspace{-0.05cm}f} \hspace{0.35cm} = \ $

2

What are the signal values of  $x(t)$  at  $t = 0$,  $t = T$  and  $t = T/2$?

$x(t=0)\hspace{0.2cm} = \ $

 $\text{V}$
$x(t=T)\ = \ $

 $\text{V}$
$x(t=T/2)\ = \ $

 $\text{V}$

3

What is the spectrum  $Y(f)$  of the trapezoidal pulse with  $y_0 = 4\,\text{V}$,  $\Delta t = 1\,\text{ms}$  and  $r_t = 0.5$?
What are the spectral values at the given frequencies?

$Y(f = 0)\hspace{0.2cm} = \ $

 $\text{mV/Hz}$
$Y(f = 0.5 \,\text{kHz})\ = \ $

 $\text{mV/Hz}$
$Y(f = 1.0 \,\text{kHz})\ = \ $

 $\text{mV/Hz}$

4

Which spectral values result with  $y_0 = 8\,\text{V}$,  $\Delta t = 0.5\,\text{ms }$  and  $r_t = 0.5$?

$Y(f=0)\hspace{0.2cm}= \ $

 $\text{mV/Hz}$
$Y(f=1.0 \,\text{kHz})\ = \ $

 $\text{mV/Hz}$


Solution

(1)  The equivalent bandwidth is (by definition) equal to the width of the equal-area rectangle:

$$\Delta f = f_1 + f_2 \hspace{0.15 cm}\underline{= 4\;{\rm{kHz}}}{\rm{.}}$$
  • For the rolloff factor holds:
$${ {r_{\hspace{-0.05cm}f} = }}\frac{ {f_2 - f_1 }}{ {f_2 + f_1 }}\hspace{0.15 cm}\underline{ = 0.5}.$$


(2)  The maximum value of the pulse  $x(t)$  occurs at time  $t = 0$ :

$$x_0 = x(t = 0) = X_0 \cdot \Delta f \hspace{0.15 cm}\underline{= 4\, \text{V}}.$$
  • At time  $t = T = 1/\Delta f$  applies due to  $\text{si}(\pi) = 0$:
$$x( {t = T} ) = x_0 \cdot {\mathop{\rm si}\nolimits} ( {\rm{\pi }} ) \cdot {\mathop{\rm si}\nolimits} ( { { {\rm{\pi }}}/{2}} )\hspace{0.15 cm}\underline{ = 0}.$$
  • Also at all multiples of  $T$:    $x(t)$  exhibits zero crossings.  At time  $t = T/2$  holds:
$$x( {t = T/2} ) = x_0 \cdot {\mathop{\rm si}\nolimits} ( { { {\rm{\pi }}}/{2}} ) \cdot {\mathop{\rm si}\nolimits}( { { {\rm{\pi }}}/{4}} ) = x_0 \cdot \frac{ { 1 \cdot \sqrt 2 /2}}{ { {\rm{\pi /}}2 \cdot {\rm{\pi /4}}}} = x_0 \cdot \frac{ {4 \cdot \sqrt 2 }}{ { {\rm{\pi }}^{\rm{2}} }} \hspace{0.15 cm}\underline{= 2.293\;{\rm{V}}}{\rm{.}}$$


(3)  The time function associated with the trapezoidal spectrum  $X(f)$  is according to the specification:

$$x( t ) = X_0 \cdot \Delta f \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot \Delta f \cdot t} ) \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot r_f \cdot \Delta f \cdot t} ).$$
  • Since both  $X(f)$  and  $x(t)$  are real and, moreover,  $y(t)$  is of the same form as  $X(f),$  we obtain, taking into account all equivalences for the spectral function of the trapezoidal pulse:
$$Y( f ) = y_0 \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot \Delta t \cdot f} ) \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot r_t \cdot \Delta t \cdot f} ).$$
  • In particular, holds:
$$Y( {f = 0} ) = y_0 \cdot \Delta t \hspace{0.15 cm}\underline{= 4 \;{\rm{mV/Hz}}}{\rm{,}}$$
$$Y( {f = 0.5\;{\rm{kHz}}} ) = y_0 \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{4}} ) \hspace{0.15 cm}\underline{= 2.293 \;{\rm{mV/Hz}}}{\rm{,}}$$
$$Y( {f = 1\;{\rm{kHz}}} ) = y_0 \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {\rm{\pi }} ) \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} )\hspace{0.15 cm}\underline{ = 0}\;{\rm{.}}$$


(4)  The spectral value at frequency  $f = 0$  is not changed:  

$$Y_0 = y_0 \cdot \Delta t \hspace{0.15 cm}\underline{= 4 \,\rm{mV/Hz}}.$$
  • But since the time function is now only half as wide, the spectrum widens by a factor of  $2$:
$$Y( {f = 1\;{\rm{kHz}}} ) = Y_0 \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{4}} ) \hspace{0.15 cm}\underline{= 2.293\,{\rm{mV/Hz}}}{\rm{.}}$$
  • In subtask  (3)  this spectral value occurred at the frequency  $f = 0.5\,\rm{kHz}$ .