Difference between revisions of "Aufgaben:Exercise 3.4Z: Eye Opening and Level Number"

From LNTwww
 
(26 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Impulsinterferenzen_bei_mehrstufiger_Übertragung
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Intersymbol_Interference_for_Multi-Level_Transmission
 
}}
 
}}
  
[[File:P_ID1420__Dig_Z_3_4.png|right|frame]]
+
[[File:P_ID1420__Dig_Z_3_4.png|right|frame|Binary and quaternary <br>eye diagrams]]
In dieser Aufgabe werden ein redundanzfreies Binärsystem und ein redundanzfreies Quaternärsystem hinsichtlich vertikaler Augenöffnung miteinander verglichen. Für die beiden Übertragungssysteme gelten die gleichen Randbedingungen:
+
In this exercise,&nbsp; a redundancy-free binary system and a redundancy-free quaternary system are compared with respect to vertical eye opening.&nbsp; The same boundary conditions apply to the two transmission systems:
* Der Sendegrundimpuls $g_s(t)$ ist jeweils NRZ&ndash;rechteckförmig und besitze die Höhe $s_0 = 1 \, {\rm V}$.
+
* The basic transmission pulse &nbsp;$g_s(t)$&nbsp; is NRZ rectangular in each case and has the height &nbsp;$s_0 = 1 \, {\rm V}$.
* Die (äquivalente) Bitrate beträgt $R_B = 100 \, {\rm Mbit/s}$.  
+
 
* Das AWGN&ndash;Rauschen besitzt die Rauschleisungsdichte $N_0$.
+
* The (equivalent) bit rate is &nbsp;$R_{\rm B} = 100 \, {\rm Mbit/s}$.
* Das Empfangsfilter sei ein Gaußtiefpass mit der Grenzfrequenz $f_G = 30 \, {\rm MHz}$:
+
 +
* The AWGN noise has the&nbsp; (one-sided)&nbsp; noise power density &nbsp;$N_0$.
 +
 
 +
* Let the receiver filter be a Gaussian low-pass filter with cutoff frequency &nbsp;$f_{\rm G} = 30 \, {\rm MHz}$:
 
:$$H_{\rm G}(f) = {\rm e}^{{- \pi \cdot f^2}/{(2f_{\rm G})^2}}\hspace{0.05cm}.$$
 
:$$H_{\rm G}(f) = {\rm e}^{{- \pi \cdot f^2}/{(2f_{\rm G})^2}}\hspace{0.05cm}.$$
* Die Entscheiderschwellen sind optimal. Der Detektionszeitpunkt ist $T_D = 0$.
+
* The decision thresholds are optimal. The detection time is &nbsp;$T_{\rm D} = 0$.
  
  
Für die halbe Augenöffnung eines $M$&ndash;stufigen Übertragungssystems gilt allgemein:
+
For the half-eye opening of an M-level transmission system,&nbsp; the following holds in general:
 
:$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} - \sum_{\nu = 1}^{\infty} |g_\nu | - \sum_{\nu = 1}^{\infty} |g_{-\nu} |\hspace{0.05cm}.$$
 
:$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} - \sum_{\nu = 1}^{\infty} |g_\nu | - \sum_{\nu = 1}^{\infty} |g_{-\nu} |\hspace{0.05cm}.$$
  
Hierbei ist $g_0 = g_d(t = 0)$ der Hauptwert des Detektionsgrundimpulses $g_d(t) = g_s(t) * h_G(t)$. Der zweite Term beschreibt die Nachläufer $g_{\rm \nu} = g_d(t = \nu T)$ und der letzte Term die Vorläufer $g_{\rm -\nu} = g_d(t = -\nu T)$.
+
*Here, &nbsp;$g_0 = g_d(t = 0)$&nbsp; is the&nbsp; "main value"&nbsp; of the basic detection pulse &nbsp;$g_d(t) = g_s(t) * h_{\rm G}(t)$.&nbsp;
Beachten Sie, dass bei der vorliegenden Konfiguration mit Gaußtiefpass
+
* alle Detektionsgrundimpulswerte $... \, g_{\rm -1}, \, g_0, \, g_1, \, ...$ positiv sind,
+
*The second term describes the trailers&nbsp; ("postcursors") &nbsp;$g_{\rm \nu} = g_d(t = \nu T)$.&nbsp;
* die Summe $... \, + \, g_{\rm -1} + g_0 + g_1\,...$ den konstanten Wert $s_0$ ergibt,
+
 
* der Hauptwert mit der komplementären Gaußschen Fehlerfunktion $Q(x)$ berechnet werden kann:
+
*The last term describes  the&nbsp; "precursors" &nbsp;$g_{\rm -\nu} = g_d(t = -\nu T)$.
 +
 
 +
 
 +
Note that in the present configuration with Gaussian low-pass
 +
* all the basic detection pulse values &nbsp;$\text{...} \, g_{\rm -1}, \, g_0, \, g_1, \, \text{...}$&nbsp; are positive,
 +
 
 +
* the (infinite) sum &nbsp;$\text{...} \, + \, g_{\rm -1} + g_0 + g_1\,\text{...}$&nbsp; gives the constant value &nbsp;$s_0$,&nbsp;
 +
 +
* the main value can be calculated with the complementary Gaussian error function &nbsp;${\rm Q}(x)$:&nbsp;
 
:$$g_0 = s_0
 
:$$g_0 = s_0
   \cdot\left [ 1- 2 \cdot {\rm Q} \left(
+
   \cdot\big [ 1- 2 \cdot {\rm Q} \left(
 
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
   \right)\right]
+
   \right)\big]
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Die Grafik zeigt die Augendiagramme des Binär&ndash; und des Quaternärsystems sowie &ndash; in roter Farbe &ndash; die zugehörigen Detektionsgrundimpulse $g_d(t)$. Eingezeichnet sind auch die optimalen Entscheiderschwellen $E$ (für $M = 2$) bzw. $E_1$, $E_2$, $E_3$ (für $M = 4$). In der Aufgabe g) sollen diese numerisch ermittelt werden.
+
The graph shows the&nbsp; (noiseless)&nbsp; eye diagrams of the binary and quaternary systems and, in red, the corresponding basic detection pulses &nbsp;$g_d(t)$:
 +
*The optimal decision thresholds &nbsp;$E$&nbsp; $($for $M = 2)$&nbsp; and &nbsp;$E_1$, &nbsp;$E_2$, &nbsp;$E_3$&nbsp; $($for $M = 4)$&nbsp; are also drawn.
  
''Hinweis:''  
+
*In subtask&nbsp; '''(7)'''&nbsp; these are to be determined numerically.
* Die Aufgabe gehört zu Kapitel[[Digitalsignal%C3%BCbertragung/Impulsinterferenzen_bei_mehrstufiger_%C3%9Cbertragung|Impulsinterferenzen bei mehrstufiger Übertragung]]. Für die komplementäre Gaußsche Fehlerfunktion gilt:
+
 
 +
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Intersymbol_Interference_for_Multi-Level_Transmission|"Intersymbol Interference for Multi-Level Transmission"]].
 +
 +
*For the complementary Gaussian error function applies:
 
:$${\rm Q}(0.25) = 0.4013,\hspace{0.2cm}{\rm Q}(0.50) = 0.3085,\hspace{0.2cm}{\rm Q}(0.75) = 0.2266,\hspace{0.2cm}{\rm Q}(1.00) = 0.1587,$$
 
:$${\rm Q}(0.25) = 0.4013,\hspace{0.2cm}{\rm Q}(0.50) = 0.3085,\hspace{0.2cm}{\rm Q}(0.75) = 0.2266,\hspace{0.2cm}{\rm Q}(1.00) = 0.1587,$$
 
:$${\rm Q}(1.25) = 0.1057,\hspace{0.2cm}{\rm Q}(1.50) = 0.0668,\hspace{0.2cm}{\rm Q}(1.75) = 0.0401,\hspace{0.2cm}{\rm Q}(2.00) =
 
:$${\rm Q}(1.25) = 0.1057,\hspace{0.2cm}{\rm Q}(1.50) = 0.0668,\hspace{0.2cm}{\rm Q}(1.75) = 0.0401,\hspace{0.2cm}{\rm Q}(2.00) =
 
  0.0228.$$
 
  0.0228.$$
 +
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die Symboldauern beim Binär&ndash; und beim Quaternärsystem?
+
{What is the symbol duration &nbsp;$T$&nbsp; for the binary and the quaternary system?
 
|type="{}"}
 
|type="{}"}
$M = 2: T$ = { 10 3% } ${\rm ns}$
+
$M = 2\text{:}\hspace{0.4cm} T \ = \ $ { 10 3% } $\ {\rm ns}$
$M = 4: T$ = { 20 3% } ${\rm ns}$
+
$M = 4\text{:}\hspace{0.4cm} T \ = \ $ { 20 3% } $\ {\rm ns}$
  
{Berechnen Sie den Hauptwert für das Binärsystem.
+
{Calculate the main value &nbsp;$g_0$&nbsp; for the binary system.
 
|type="{}"}
 
|type="{}"}
$M = 2: g_0$ = { 0.547 3% } ${\rm V}$
+
$M = 2\text{:}\hspace{0.4cm} g_0\ = \ $ { 0.547 3% } $\ {\rm V}$
  
{Berechnen Sie den Hauptwert für das Quaternärsystem.
+
{Calculate the main value &nbsp;$g_0$&nbsp; for the quaternary system.
 
|type="{}"}
 
|type="{}"}
$M = 4: g_0$ = { 0.867 3% } ${\rm V}$
+
$M = 4\text{:}\hspace{0.4cm} g_0\ = \ $ { 0.867 3% } $\ {\rm V}$
  
{Welche Gleichungen gelten unter Berücksichtigung des Gaußtiefpasses?
+
{Which equations are valid considering the Gaussian low-pass?
 
|type="[]"}
 
|type="[]"}
+ $\ddot{o}(T_D)/2 = M \cdot g_0/(M &ndash; 1) &ndash; s_0,$
+
+ $\ddot{o}(T_{\rm D})/2 = M \cdot g_0/(M - 1) - s_0,$
- $\ddot{o}(T_D)/2 = M \cdot s_0/(M &ndash; 1) &ndash; g_0,$
+
- $\ddot{o}(T_{\rm D})/2 = M \cdot s_0/(M - 1) - g_0,$
+ $\ddot{o}(T_D)/2 = s_0/(M &ndash; 1) \cdot [1 &ndash; 2 \cdot M \cdot Q((2\pi)^{\rm 1/2} \cdot {\rm log_2} \, (M) \cdot f_G/R_B)].$
+
+ $\ddot{o}(T_{\rm D})/2 = s_0/(M - 1) \cdot \big [1 - 2 \cdot M \cdot {\rm Q}(\sqrt{2\pi} \cdot {\rm log_2} \, (M) \cdot f_{\rm G}/R_{\rm B}) \big ].$
  
{Welche Augenöffnung ergibt sich für das Binärsystem?
+
{What is the eye opening for the binary system?
 
|type="{}"}
 
|type="{}"}
$M = 2: \ddot{o}(T_D)$ = { 0.188 3% } $V$
+
$M = 2\text{:}\hspace{0.4cm} \ddot{o}(T_{\rm D})\ = \ $ { 0.188 3% } $\ {\rm V}$
  
{Welche Augenöffnung ergibt sich für das Quaternärsystem?
+
{What is the eye opening for the quaternary system?
 
|type="{}"}
 
|type="{}"}
$M = 4: \ddot{o}(T_D)$ = { 0.312 3% } $V$
+
$M = 4\text{:}\hspace{0.4cm} \ddot{o}(T_{\rm D})\ = \ $ { 0.312 3% } $\ {\rm V}$
  
{Bestimmen Sie die optimalen Schwellenwerte des Quaternärsystems. Geben Sie zur Kontrolle den Schwellenwert $E_1$ ein.
+
{Determine the optimal thresholds of the quaternary system.&nbsp; Enter the lower threshold &nbsp;$E_1$&nbsp; as a control.
 
|type="{}"}
 
|type="{}"}
$M = 4: E_1$ = { -0.595--0.561 }  
+
$M = 4\text{:}\hspace{0.4cm} E_1\ = \ $ { -0.595--0.561 } $\ {\rm V}$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)''' Beim Binärsystem ist die Bitdauer gleich dem Kehrwert der äquivalenten Bitrate:
+
'''(1)'''&nbsp; In the binary system,&nbsp; the bit duration is equal to the reciprocal of the equivalent bit rate:
 
:$$T = \frac{1}{R_{\rm B}}= \frac{1}{100\,{\rm Mbit/s}}\hspace{0.15cm}\underline {= 10\,{\rm ns}}\hspace{0.05cm}.$$
 
:$$T = \frac{1}{R_{\rm B}}= \frac{1}{100\,{\rm Mbit/s}}\hspace{0.15cm}\underline {= 10\,{\rm ns}}\hspace{0.05cm}.$$
  
Die Symboldauer des Quaternärsystems ist doppelt so groß:
+
*The symbol duration of the quaternary system is twice as large:
 
:$$T = \frac{{\rm log_2}\hspace{0.1cm}4}{R_{\rm B}}\hspace{0.15cm}\underline {=  20\,{\rm ns}}\hspace{0.05cm}.$$
 
:$$T = \frac{{\rm log_2}\hspace{0.1cm}4}{R_{\rm B}}\hspace{0.15cm}\underline {=  20\,{\rm ns}}\hspace{0.05cm}.$$
  
  
'''(2)''' Entsprechend der angegebenen Gleichung gilt für das Binärsystem:
+
'''(2)'''&nbsp; According to the given equation,&nbsp; the following holds for the binary system:
 
:$$g_0 \ = \ s_0  \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot
 
:$$g_0 \ = \ s_0  \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot
 
   T  \right)\right]= 1\,{\rm V}  \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot 30\,{\rm MHz} \cdot
 
   T  \right)\right]= 1\,{\rm V}  \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot 30\,{\rm MHz} \cdot
 
   10\,{\rm ns}  \right)\right] $$
 
   10\,{\rm ns}  \right)\right] $$
:$$ \ \approx \ 1\,{\rm V}  \cdot\left [ 1- 2 \cdot {\rm Q} \left( 0.75 \right)\right]
+
:$$\Rightarrow \hspace{0.3cm} g_0  \ \approx \ 1\,{\rm V}  \cdot\left [ 1- 2 \cdot {\rm Q} \left( 0.75 \right)\right]
 
   = 1\,{\rm V}  \cdot\left [ 1- 2 \cdot 0.2266 \right]\hspace{0.15cm}\underline { =  0.547\,{\rm V}}
 
   = 1\,{\rm V}  \cdot\left [ 1- 2 \cdot 0.2266 \right]\hspace{0.15cm}\underline { =  0.547\,{\rm V}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(3)''' Aufgrund der doppelten Symboldauer ergibt sich bei gleicher Grenzfrequenz für $M = 4$:
+
'''(3)'''&nbsp; Due to the double symbol duration,&nbsp; with the same cutoff frequency for&nbsp; $M = 4$:
 
:$$g_0 \ =  1\,{\rm V}  \cdot\left [ 1- 2 \cdot {\rm Q} \left( 1.5 \right)\right]
 
:$$g_0 \ =  1\,{\rm V}  \cdot\left [ 1- 2 \cdot {\rm Q} \left( 1.5 \right)\right]
 
   = 1\,{\rm V}  \cdot\left [ 1- 2 \cdot 0.0668 \right] \hspace{0.15cm}\underline {=  0.867\,{\rm V}}
 
   = 1\,{\rm V}  \cdot\left [ 1- 2 \cdot 0.0668 \right] \hspace{0.15cm}\underline {=  0.867\,{\rm V}}
Line 94: Line 113:
  
  
'''(4)''' Erweitert man die angegebene Gleichung um $&plusmn;g_0$, so erhält man:
+
'''(4)'''&nbsp; Extending the given equation by&nbsp; $\pm g_0$,&nbsp; we obtain:
 
:$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} + g_0 - g_0 - \sum_{\nu = 1}^{\infty} g_\nu  - \sum_{\nu = 1}^{\infty} g_{-\nu}
 
:$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} + g_0 - g_0 - \sum_{\nu = 1}^{\infty} g_\nu  - \sum_{\nu = 1}^{\infty} g_{-\nu}
 
  = \frac{M}{ M-1} \cdot g_0 - s_0 \hspace{0.05cm}.$$
 
  = \frac{M}{ M-1} \cdot g_0 - s_0 \hspace{0.05cm}.$$
  
Hierbei ist berücksichtigt, dass beim Gaußtiefpass auf die Betragsbildung verzichtet werden kann und zum zweiten, dass die Summe über alle Detektionsimpulswerte gleich $s_0$ ist. Richtig ist also der <u>erste, aber auch der letzte Lösungsvorschlag</u>:
+
Here is taken into account:
 +
*In the case of the Gaussian low-pass filter,&nbsp; the magnitude formation can be omitted.
 +
*The sum over all detection pulse values is equal to&nbsp; $s_0$.  
 +
 
 +
 
 +
The&nbsp; <u>first, but also the last solution</u>&nbsp; is correct:
 
:$${\ddot{o}(T_{\rm D})}/{ 2} \ = \ \frac{M}{ M-1} \cdot g_0 - s_0
 
:$${\ddot{o}(T_{\rm D})}/{ 2} \ = \ \frac{M}{ M-1} \cdot g_0 - s_0
 
  = \frac{M}{ M-1} \cdot s_0 \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot
 
  = \frac{M}{ M-1} \cdot s_0 \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot
   T  \right)\right]- s_0 = $$
+
   T  \right)\right]- s_0 $$
:$$ \ = \ \frac{s_0}{ M-1} \cdot \left [ 1- 2 \cdot M \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot
+
:$$\Rightarrow \hspace{0.3cm} {\ddot{o}(T_{\rm D})}/{ 2}  \ = \ \frac{s_0}{ M-1} \cdot \left [ 1- 2 \cdot M \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot
 
   T  \right)\right]
 
   T  \right)\right]
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
 +
Using the relation&nbsp; $T = {\rm log_2} \,(M)/R_{\rm B}$,&nbsp; we arrive at the third proposed solution,&nbsp; which is also applicable.
  
Mit der Beziehung $T = {\rm log_2} \,(M)/R_B$ kommt man zum dritten, ebenfalls zutreffenden Lösungsvorschlag.
 
  
 
+
'''(5)'''&nbsp; Using the results from&nbsp; '''(2)'''&nbsp; and&nbsp; '''(4)''',&nbsp; one obtains with&nbsp; $M = 2$:
'''(5)''' Mit den Ergebnissen aus b) und d) sowie $M = 2$ erhält man:
 
 
:$${\ddot{o}(T_{\rm D})} = 2 \cdot (2 \cdot g_0 -  s_0) = 2 \cdot (2 \cdot 0.547\,{\rm V} -  1\,{\rm V}) \hspace{0.15cm}\underline {= 0.188\,{\rm V}}
 
:$${\ddot{o}(T_{\rm D})} = 2 \cdot (2 \cdot g_0 -  s_0) = 2 \cdot (2 \cdot 0.547\,{\rm V} -  1\,{\rm V}) \hspace{0.15cm}\underline {= 0.188\,{\rm V}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(6)''' Mit $g_0 = 0.867 \, {\rm V}$, $s_0 = 1 \, {\rm V}$ und $M = 4$ ergibt sich dagegen:
+
'''(6)'''&nbsp; On the other hand,&nbsp; with $g_0 = 0.867 \, {\rm V}$, $s_0 = 1 \, {\rm V}$&nbsp; and&nbsp; $M = 4$,&nbsp; we get:
 
:$${\ddot{o}(T_{\rm D})} = 2 \cdot ({4}/{3} \cdot 0.867\,{\rm V} -  1\,{\rm V}) \hspace{0.15cm}\underline {= 0.312\,{\rm V}}
 
:$${\ddot{o}(T_{\rm D})} = 2 \cdot ({4}/{3} \cdot 0.867\,{\rm V} -  1\,{\rm V}) \hspace{0.15cm}\underline {= 0.312\,{\rm V}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(7)''' Entsprechend Teilaufgabe c) ist $g_0 = 0.867 \, {\rm V}$ und dementsprechend $g_{\rm VN} = 0.133 \, {\rm V}$ (Summe aller Vor&ndash; und Nachläufer). Die Augenöffnung beträgt $\ddot{o} = 0.312 \, {\rm V}$. Aus der Skizze auf der Angabenseite erkennt man, dass die obere Begrenzung des oberen Auges folgenden Wert besitzt (für $T_D = 0$):
+
'''(7)'''&nbsp; According to subtask&nbsp; '''(3)''',&nbsp; $g_0 = 0.867 \, {\rm V}$&nbsp; and correspondingly $g_{\rm VN} = 0.133 \, {\rm V}$&nbsp; (sum of all precursors and trailers).  
 +
*The eye opening is&nbsp; $\ddot{o} = 0.312 \, {\rm V}$.  
 +
 
 +
*From the sketch on the information section,&nbsp; we can see that the upper boundary&nbsp; $($German:&nbsp; "obere Grenzlinie" &nbsp; &rArr; &nbsp; "o"$)$&nbsp; of the upper eye has the following value&nbsp; $($for&nbsp; $T_{\rm D} = 0)$:
 
:$$o = s_0 - 2 \cdot g_{\rm VN}= g_0 -  g_{\rm VN}=  0.867\,{\rm V} -  0.133\,{\rm V} = 0.734\,{\rm V}
 
:$$o = s_0 - 2 \cdot g_{\rm VN}= g_0 -  g_{\rm VN}=  0.867\,{\rm V} -  0.133\,{\rm V} = 0.734\,{\rm V}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Die untere Begrenzung liegt bei:
+
*The lower limit&nbsp; $($German:&nbsp; "untere Grenzlinie" &nbsp; &rArr; &nbsp; "u"$)$&nbsp; is at:
 
:$$u = o -{\ddot{o}} =  0.734\,{\rm V} -  0.312\,{\rm V} = 0.422\,{\rm V}
 
:$$u = o -{\ddot{o}} =  0.734\,{\rm V} -  0.312\,{\rm V} = 0.422\,{\rm V}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Daraus folgt für die optimale Entscheiderschwelle des oberen Auges:
+
*From this follows for the optimal decision threshold of the upper eye:
 
:$$E_3 = \frac{o + u}{2} = \frac{0.734\,{\rm V} + 0.422\,{\rm V}}{2}  { =  0.578\,{\rm V}}
 
:$$E_3 = \frac{o + u}{2} = \frac{0.734\,{\rm V} + 0.422\,{\rm V}}{2}  { =  0.578\,{\rm V}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Der gesuchte Schwellenwert (für das untere Auge) ist $E_1 \, \underline {= \, &ndash;0.578 \, V}$. Die mittlere Entscheiderschwelle liegt aus Symmetriegründen bei $E_2 = 0$.
+
*The sought threshold&nbsp; (for the lower eye)&nbsp; is $E_1 \, \underline {= \, &ndash;0.578 \, V}$.
 +
 +
*The average decision threshold is&nbsp; $E_2 = 0$&nbsp; for symmetry reasons.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.4 Augendiagramm mehrstufiger Systeme^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.4 Eye Opening with Multilevel Systems^]]

Latest revision as of 17:09, 20 June 2022

Binary and quaternary
eye diagrams

In this exercise,  a redundancy-free binary system and a redundancy-free quaternary system are compared with respect to vertical eye opening.  The same boundary conditions apply to the two transmission systems:

  • The basic transmission pulse  $g_s(t)$  is NRZ rectangular in each case and has the height  $s_0 = 1 \, {\rm V}$.
  • The (equivalent) bit rate is  $R_{\rm B} = 100 \, {\rm Mbit/s}$.
  • The AWGN noise has the  (one-sided)  noise power density  $N_0$.
  • Let the receiver filter be a Gaussian low-pass filter with cutoff frequency  $f_{\rm G} = 30 \, {\rm MHz}$:
$$H_{\rm G}(f) = {\rm e}^{{- \pi \cdot f^2}/{(2f_{\rm G})^2}}\hspace{0.05cm}.$$
  • The decision thresholds are optimal. The detection time is  $T_{\rm D} = 0$.


For the half-eye opening of an M-level transmission system,  the following holds in general:

$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} - \sum_{\nu = 1}^{\infty} |g_\nu | - \sum_{\nu = 1}^{\infty} |g_{-\nu} |\hspace{0.05cm}.$$
  • Here,  $g_0 = g_d(t = 0)$  is the  "main value"  of the basic detection pulse  $g_d(t) = g_s(t) * h_{\rm G}(t)$. 
  • The second term describes the trailers  ("postcursors")  $g_{\rm \nu} = g_d(t = \nu T)$. 
  • The last term describes the  "precursors"  $g_{\rm -\nu} = g_d(t = -\nu T)$.


Note that in the present configuration with Gaussian low-pass

  • all the basic detection pulse values  $\text{...} \, g_{\rm -1}, \, g_0, \, g_1, \, \text{...}$  are positive,
  • the (infinite) sum  $\text{...} \, + \, g_{\rm -1} + g_0 + g_1\,\text{...}$  gives the constant value  $s_0$, 
  • the main value can be calculated with the complementary Gaussian error function  ${\rm Q}(x)$: 
$$g_0 = s_0 \cdot\big [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\big] \hspace{0.05cm}.$$

The graph shows the  (noiseless)  eye diagrams of the binary and quaternary systems and, in red, the corresponding basic detection pulses  $g_d(t)$:

  • The optimal decision thresholds  $E$  $($for $M = 2)$  and  $E_1$,  $E_2$,  $E_3$  $($for $M = 4)$  are also drawn.
  • In subtask  (7)  these are to be determined numerically.


Notes:

  • For the complementary Gaussian error function applies:
$${\rm Q}(0.25) = 0.4013,\hspace{0.2cm}{\rm Q}(0.50) = 0.3085,\hspace{0.2cm}{\rm Q}(0.75) = 0.2266,\hspace{0.2cm}{\rm Q}(1.00) = 0.1587,$$
$${\rm Q}(1.25) = 0.1057,\hspace{0.2cm}{\rm Q}(1.50) = 0.0668,\hspace{0.2cm}{\rm Q}(1.75) = 0.0401,\hspace{0.2cm}{\rm Q}(2.00) = 0.0228.$$


Questions

1

What is the symbol duration  $T$  for the binary and the quaternary system?

$M = 2\text{:}\hspace{0.4cm} T \ = \ $

$\ {\rm ns}$
$M = 4\text{:}\hspace{0.4cm} T \ = \ $

$\ {\rm ns}$

2

Calculate the main value  $g_0$  for the binary system.

$M = 2\text{:}\hspace{0.4cm} g_0\ = \ $

$\ {\rm V}$

3

Calculate the main value  $g_0$  for the quaternary system.

$M = 4\text{:}\hspace{0.4cm} g_0\ = \ $

$\ {\rm V}$

4

Which equations are valid considering the Gaussian low-pass?

$\ddot{o}(T_{\rm D})/2 = M \cdot g_0/(M - 1) - s_0,$
$\ddot{o}(T_{\rm D})/2 = M \cdot s_0/(M - 1) - g_0,$
$\ddot{o}(T_{\rm D})/2 = s_0/(M - 1) \cdot \big [1 - 2 \cdot M \cdot {\rm Q}(\sqrt{2\pi} \cdot {\rm log_2} \, (M) \cdot f_{\rm G}/R_{\rm B}) \big ].$

5

What is the eye opening for the binary system?

$M = 2\text{:}\hspace{0.4cm} \ddot{o}(T_{\rm D})\ = \ $

$\ {\rm V}$

6

What is the eye opening for the quaternary system?

$M = 4\text{:}\hspace{0.4cm} \ddot{o}(T_{\rm D})\ = \ $

$\ {\rm V}$

7

Determine the optimal thresholds of the quaternary system.  Enter the lower threshold  $E_1$  as a control.

$M = 4\text{:}\hspace{0.4cm} E_1\ = \ $

$\ {\rm V}$


Solution

(1)  In the binary system,  the bit duration is equal to the reciprocal of the equivalent bit rate:

$$T = \frac{1}{R_{\rm B}}= \frac{1}{100\,{\rm Mbit/s}}\hspace{0.15cm}\underline {= 10\,{\rm ns}}\hspace{0.05cm}.$$
  • The symbol duration of the quaternary system is twice as large:
$$T = \frac{{\rm log_2}\hspace{0.1cm}4}{R_{\rm B}}\hspace{0.15cm}\underline {= 20\,{\rm ns}}\hspace{0.05cm}.$$


(2)  According to the given equation,  the following holds for the binary system:

$$g_0 \ = \ s_0 \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right]= 1\,{\rm V} \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot 30\,{\rm MHz} \cdot 10\,{\rm ns} \right)\right] $$
$$\Rightarrow \hspace{0.3cm} g_0 \ \approx \ 1\,{\rm V} \cdot\left [ 1- 2 \cdot {\rm Q} \left( 0.75 \right)\right] = 1\,{\rm V} \cdot\left [ 1- 2 \cdot 0.2266 \right]\hspace{0.15cm}\underline { = 0.547\,{\rm V}} \hspace{0.05cm}.$$


(3)  Due to the double symbol duration,  with the same cutoff frequency for  $M = 4$:

$$g_0 \ = 1\,{\rm V} \cdot\left [ 1- 2 \cdot {\rm Q} \left( 1.5 \right)\right] = 1\,{\rm V} \cdot\left [ 1- 2 \cdot 0.0668 \right] \hspace{0.15cm}\underline {= 0.867\,{\rm V}} \hspace{0.05cm}.$$


(4)  Extending the given equation by  $\pm g_0$,  we obtain:

$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} + g_0 - g_0 - \sum_{\nu = 1}^{\infty} g_\nu - \sum_{\nu = 1}^{\infty} g_{-\nu} = \frac{M}{ M-1} \cdot g_0 - s_0 \hspace{0.05cm}.$$

Here is taken into account:

  • In the case of the Gaussian low-pass filter,  the magnitude formation can be omitted.
  • The sum over all detection pulse values is equal to  $s_0$.


The  first, but also the last solution  is correct:

$${\ddot{o}(T_{\rm D})}/{ 2} \ = \ \frac{M}{ M-1} \cdot g_0 - s_0 = \frac{M}{ M-1} \cdot s_0 \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right]- s_0 $$
$$\Rightarrow \hspace{0.3cm} {\ddot{o}(T_{\rm D})}/{ 2} \ = \ \frac{s_0}{ M-1} \cdot \left [ 1- 2 \cdot M \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right] \hspace{0.05cm}.$$

Using the relation  $T = {\rm log_2} \,(M)/R_{\rm B}$,  we arrive at the third proposed solution,  which is also applicable.


(5)  Using the results from  (2)  and  (4),  one obtains with  $M = 2$:

$${\ddot{o}(T_{\rm D})} = 2 \cdot (2 \cdot g_0 - s_0) = 2 \cdot (2 \cdot 0.547\,{\rm V} - 1\,{\rm V}) \hspace{0.15cm}\underline {= 0.188\,{\rm V}} \hspace{0.05cm}.$$


(6)  On the other hand,  with $g_0 = 0.867 \, {\rm V}$, $s_0 = 1 \, {\rm V}$  and  $M = 4$,  we get:

$${\ddot{o}(T_{\rm D})} = 2 \cdot ({4}/{3} \cdot 0.867\,{\rm V} - 1\,{\rm V}) \hspace{0.15cm}\underline {= 0.312\,{\rm V}} \hspace{0.05cm}.$$


(7)  According to subtask  (3),  $g_0 = 0.867 \, {\rm V}$  and correspondingly $g_{\rm VN} = 0.133 \, {\rm V}$  (sum of all precursors and trailers).

  • The eye opening is  $\ddot{o} = 0.312 \, {\rm V}$.
  • From the sketch on the information section,  we can see that the upper boundary  $($German:  "obere Grenzlinie"   ⇒   "o"$)$  of the upper eye has the following value  $($for  $T_{\rm D} = 0)$:
$$o = s_0 - 2 \cdot g_{\rm VN}= g_0 - g_{\rm VN}= 0.867\,{\rm V} - 0.133\,{\rm V} = 0.734\,{\rm V} \hspace{0.05cm}.$$
  • The lower limit  $($German:  "untere Grenzlinie"   ⇒   "u"$)$  is at:
$$u = o -{\ddot{o}} = 0.734\,{\rm V} - 0.312\,{\rm V} = 0.422\,{\rm V} \hspace{0.05cm}.$$
  • From this follows for the optimal decision threshold of the upper eye:
$$E_3 = \frac{o + u}{2} = \frac{0.734\,{\rm V} + 0.422\,{\rm V}}{2} { = 0.578\,{\rm V}} \hspace{0.05cm}.$$
  • The sought threshold  (for the lower eye)  is $E_1 \, \underline {= \, –0.578 \, V}$.
  • The average decision threshold is  $E_2 = 0$  for symmetry reasons.