Difference between revisions of "Aufgaben:Exercise 3.4Z: Trapezoid, Rectangle and Triangle"

From LNTwww
m (Text replacement - "Signaldarstellung/Gesetzmäßigkeiten der Fouriertransformation" to "Signal_Representation/Fourier_Transform_Laws")
m (Text replacement - "”" to """)
 
(10 intermediate revisions by 4 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID510__Sig_Z_3_4.png|right|frame|Trapezimpuls und dessen Grenzfälle „Rechteck” und „Dreieck” ]]
+
[[File:P_ID510__Sig_Z_3_4.png|right|frame|Trapezoidal pulse and its limiting cases  "Rectangle"  and  "Triangle" ]]
Betrachtet werden drei unterschiedliche Impulsformen. Der Impuls&nbsp; ${x(t)}$&nbsp; ist trapezförmig. Für&nbsp; $| t | < t_1 = 4 \,\text{ms}$&nbsp; ist der Zeitverlauf konstant gleich&nbsp; ${A} = 1\, \text{V}$. Danach fällt&nbsp; ${x(t)}$&nbsp; bis zum Zeitpunkt&nbsp; $t_2 = 6\, \text{ms}$&nbsp; linear bis auf den Wert Null ab.
+
Three different pulse shapes are considered.&nbsp; The pulse&nbsp; ${x(t)}$&nbsp; is trapezoidal.&nbsp; For&nbsp; $| t | < t_1 = 4 \,\text{ms}$&nbsp;the time course is constant equal to&nbsp; ${A} = 1\, \text{V}$.&nbsp; Afterwards,&nbsp; ${x(t)}$&nbsp; drops linearly to the value zero until the time&nbsp; $t_2 = 6\, \text{ms}$.&nbsp;
  
Mit den beiden abgeleiteten Systemgrößen, nämlich
+
The spectral function of the trapezoidal pulse is
  
* der&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|äquivalenten Impulsdauer]]&nbsp;
+
:$$X( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits}( {{\rm \pi}  \cdot \Delta t \cdot f} ) \cdot  \hspace{0.1cm}{\mathop{\rm si}\nolimits}( {{\rm \pi}\cdot \Delta t \cdot  r_t \cdot f} ).$$  
:$$\Delta t = t_1 + t_2$$
 
  
* und dem so genannten Rolloff-Faktor (im Zeitbereich)
+
with the two derived system quantities, namely
:$$r_t = \frac{t_2  - t_1 }{t_2  + t_1 }$$
 
  
lautet die Spektralfunktion des Trapezimpulses:
+
* the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Reciprocity_Theorem_of_Time_duration_and_Bandwidth|equivalent bandwidth]],&nbsp;
:$$X( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits}( {{\rm \pi}  \cdot \Delta t \cdot f} ) \cdot  \hspace{0.1cm}{\mathop{\rm si}\nolimits}( {{\rm \pi}\cdot \Delta t \cdot r_t \cdot  f} ).$$
+
:$$\Delta t = t_1 + t_2,$$
Weiter sind in der Grafik noch der Rechteckimpuls&nbsp; ${r(t)}$&nbsp; und der Dreieckimpuls&nbsp; ${d(t)}$&nbsp; dargestellt, die beide als Grenzfälle des Trapezimpulses&nbsp; ${x(t)}$&nbsp; interpretiert werden können.
 
  
 +
* and the so-called roll-off factor (in the time domain):
 +
:$$r_t = \frac{t_2  - t_1 }{t_2  + t_1 }.$$
  
 +
Furthermore, the rectangular pulse&nbsp; ${r(t)}$&nbsp; and the triangular pulse&nbsp; ${d(t)}$&nbsp; are also shown in the graph, both of which can be interpreted as limiting cases of the trapezoidal pulse&nbsp; ${x(t)}$.
  
  
Line 25: Line 25:
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Signal_Representation/Fourier_Transform_Laws|Gesetzmäßigkeiten der Fouriertransformation]].
 
 
*Sie können Ihre Ergebnisse anhand der beiden  interaktiven Applets&nbsp; [[Applets:Impulse_und_Spektren|Impulse und Spektren]]&nbsp; sowie&nbsp;  [[Applets:Frequenzgang_und_Impulsantwort|Frequenzgang und Impulsantwort]]&nbsp; überprüfen.
 
  
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Fourier_Transform_Theorems|Fourier Transform Theorems]].
 +
*You can check your results using the two interactive applets &nbsp;
 +
:[[Applets:Pulses_and_Spectra|Pulses and Spectra]], 
 +
:[[Applets:Frequency_%26_Impulse_Responses|Frequency & Impulse Responses]].
  
  
===Fragebogen===
+
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die äquivalente Impulsdauer und der Rolloff-Faktor von&nbsp; ${x(t)}$?
+
{What is the equivalent pulse duration and the rolloff factor of&nbsp; ${x(t)}$?
 
|type="{}"}
 
|type="{}"}
 
$\Delta t \ = \ $ { 10 3% } &nbsp;$\text{ms}$
 
$\Delta t \ = \ $ { 10 3% } &nbsp;$\text{ms}$
Line 41: Line 43:
  
  
{Welche Aussagen sind hinsichtlich der Spektralfunktion&nbsp; ${X(f)}$&nbsp; zutreffend?
+
{Which statements are true regarding the spectral function&nbsp; ${X(f)}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Der Spektralwert bei der Frequenz&nbsp; $f = 0$&nbsp; ist gleich&nbsp; $20 \,\text{mV/Hz}$.
+
- The spectral value at frequency&nbsp; $f = 0$&nbsp; is equal to&nbsp; $20 \,\text{mV/Hz}$.
+ Für die Phasenfunktion sind die Werte&nbsp; $0$&nbsp; oder&nbsp; $\pi$&nbsp; $(180^{\circ})$&nbsp; möglich.
+
+ For the phase function the values&nbsp; $0$&nbsp; and&nbsp; $\pi$&nbsp; $(180^{\circ})$&nbsp; are possible.
+ ${X(f)}$&nbsp; weist nur Nullstellen bei allen Vielfachen von&nbsp; $100 \,\text{Hz}$&nbsp; auf.
+
+ ${X(f)}$&nbsp; only has zeros at all multiples of&nbsp; $100 \,\text{Hz}$.
  
  
{Welche Aussagen sind hinsichtlich der Spektralfunktion&nbsp; ${R(f)}$&nbsp; zutreffend?
+
{Which statements are true regarding the spectral function&nbsp; ${R(f)}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Der Spektralwert bei der Frequenz&nbsp; $f = 0$&nbsp; ist gleich ${X(f = 0)}$.
+
+ The spectral value at frequency&nbsp; $f = 0$&nbsp; is equal to&nbsp; ${X(f = 0)}$.
+ Für die Phasenfunktion sind die Werte&nbsp; $0$&nbsp; oder&nbsp; $\pi$&nbsp; $(180^{\circ})$&nbsp; möglich.
+
+ The values&nbsp; $0$&nbsp; and&nbsp; $\pi$&nbsp; $(180^{\circ})$&nbsp; are possible for the phase function.
+ ${R(f)}$&nbsp; weist nur Nullstellen bei allen Vielfachen von&nbsp; $100 \,\text{Hz}$&nbsp; auf.
+
+ ${R(f)}$&nbsp; only has zeros at all multiples of&nbsp; $100 \,\text{Hz}$.
  
  
{Welche Aussagen sind hinsichtlich der Spektralfunktion&nbsp; ${D(f)}$&nbsp; zutreffend?
+
{Which statements are true regarding the spectral function&nbsp; ${D(f)}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Der Spektralwert bei der Frequenz&nbsp; $f = 0$&nbsp; ist gleich&nbsp; ${X(f = 0)}$.
+
+ The spectral value at frequency&nbsp; $f = 0$&nbsp; is equal to&nbsp; ${X(f = 0)}$.
- Für die Phasenfunktion sind die Werte $0$ oder&nbsp; $\pi$&nbsp; $(180^{\circ})$&nbsp; möglich.
+
- The values&nbsp; $0$&nbsp; and&nbsp; $\pi$&nbsp; $(180^{\circ})$&nbsp; are possible for the phase function.
+ ${D(f)}$&nbsp; weist nur Nullstellen bei allen Vielfachen von&nbsp; $100 \,\text{Hz}$ auf.
+
+ ${D(f)}$&nbsp; only has zeros at all multiples of&nbsp; $100 \,\text{Hz}$.
  
  
Line 65: Line 67:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Die äquivalente Impulsdauer ist&nbsp; $\Delta t = t_1 + t_2 \;\underline{= 10 \,\text{ms}}$&nbsp; und der Rolloff-Faktor&nbsp; $r_t = 2/10 \;\underline{= 0.2}$.
+
'''(1)'''&nbsp;  The equivalent pulse duration is&nbsp; $\Delta t = t_1 + t_2 \;\underline{= 10 \,\text{ms}}$&nbsp; and the rolloff factor is&nbsp; $r_t = 2/10 \;\underline{= 0.2}$.
  
  
  
'''(2)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
+
'''(2)'''&nbsp; Proposed <u>solutions 2 and 3</u> are correct:
*Der Spektralwert bei&nbsp; $f = 0$&nbsp; beträgt&nbsp; $A \cdot \Delta t = 10 \,\text{mV/Hz}$.  
+
*The spectral value at&nbsp; $f = 0$&nbsp; is&nbsp; $A \cdot \Delta t = 10 \,\text{mV/Hz}$.  
*Da&nbsp; ${X(f)}$&nbsp; reell ist und sowohl positive als auch negative Werte annehmen kann, sind nur die zwei Phasenwerte&nbsp; $0$&nbsp; und&nbsp; $\pi$&nbsp; möglich.
+
*Since&nbsp; ${X(f)}$&nbsp; is real and can assume both positive and negative values, only the two phase values&nbsp; $0$&nbsp; und&nbsp; $\pi$&nbsp; are possible.
*Nullstellen gibt es aufgrund der ersten si-Funktion bei allen Vielfachen von&nbsp; $1/\Delta t = 100\, \text{Hz}$.  
+
*Zeros exist due to the first si&ndash;function at all multiples of&nbsp; $1/\Delta t = 100\, \text{Hz}$.  
*Die zweite si-Funktion führt zu Nulldurchgängen im Abstand&nbsp; $1/(r_t \cdot \Delta t) = 500 \,\text{Hz}$. Diese fallen exakt mit den Nullstellen der ersten si-Funktion zusammen.  
+
*The second si&ndash;function leads to zero crossings at intervals of&nbsp; $1/(r_t \cdot \Delta t) = 500 \,\text{Hz}$.&nbsp; These coincide exactly with the zeros of the first si&ndash;function.  
  
  
  
'''(3)'''&nbsp;  <u>Alle Lösungsvorschläge</u> sind zutreffend:
+
'''(3)'''&nbsp;  <u>All proposed solutions</u> are correct:
*Mit der äquivalenten Impulsdauer&nbsp; $\Delta t = 10 \,\text{ms}$&nbsp; und dem Rolloff-Faktor&nbsp; $r_t = 0$&nbsp; erhält man: &nbsp; $R( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {{\rm{\pi }} \cdot \Delta t \cdot f} ).$
+
*With the equivalent pulse duration&nbsp; $\Delta t = 10 \,\text{ms}$&nbsp; and the rolloff factor&nbsp; $r_t = 0$&nbsp; one obtains: &nbsp; $R( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {{\rm{\pi }} \cdot \Delta t \cdot f} ).$
*Daraus folgt&nbsp; $R( f = 0) = A \cdot \Delta t = X( f = 0).$
+
*It follows that&nbsp; $R( f = 0) = A \cdot \Delta t = X( f = 0).$
  
  
  
'''(4)'''&nbsp; Hier sind die <u>Lösungsvorschläge 1 und 3</u> zutreffend:
+
'''(4)'''&nbsp; Proposed <u>solutions 2 and 3</u> are correct:
*Beim Dreieckimpuls ist der Rolloff-Faktor&nbsp; $r_t = 1$.  
+
*For the triangular pulse, the rolloff factor is&nbsp; $r_t = 1$.  
*Die äquivalente Impulsdauer ist&nbsp; $\Delta t = 10 \,\text{ms}$. Daraus folgt &nbsp; $D( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ^2 ( {{\rm{\pi }} \cdot \Delta t \cdot f} )$&nbsp; und&nbsp; $D( f = 0) = A \cdot \Delta t  = X( f = 0)$.  
+
*The equivalent pulse duration is&nbsp; $\Delta t = 10 \,\text{ms}$.&nbsp; It follows that &nbsp; $D( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ^2 ( {{\rm{\pi }} \cdot \Delta t \cdot f} )$&nbsp; and&nbsp; $D( f = 0) = A \cdot \Delta t  = X( f = 0)$.  
*Da&nbsp; ${D(f)}$&nbsp; nicht negativ werden kann, ist die Phase&nbsp; $[{\rm arc} \; {D(f)}]$&nbsp; stets Null. Der Phasenwert&nbsp; $\pi$&nbsp; $(180°)$&nbsp; ist also bei der Dreieckform nicht möglich.  
+
*Since&nbsp; ${D(f)}$&nbsp; cannot become negative, the phase&nbsp; $[{\rm arc} \; {D(f)}]$&nbsp; is always zero.&nbsp; The phase value&nbsp; $\pi$&nbsp; $(180°)$&nbsp; is therefore not possible with the triangular pulse.  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^3. Aperiodische Signale - Impulse^]]
+
[[Category:Signal Representation: Exercises|^3.3 Fourier Transform Theorems^]]

Latest revision as of 16:39, 28 May 2021

Trapezoidal pulse and its limiting cases  "Rectangle"  and  "Triangle"

Three different pulse shapes are considered.  The pulse  ${x(t)}$  is trapezoidal.  For  $| t | < t_1 = 4 \,\text{ms}$ the time course is constant equal to  ${A} = 1\, \text{V}$.  Afterwards,  ${x(t)}$  drops linearly to the value zero until the time  $t_2 = 6\, \text{ms}$. 

The spectral function of the trapezoidal pulse is

$$X( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits}( {{\rm \pi} \cdot \Delta t \cdot f} ) \cdot \hspace{0.1cm}{\mathop{\rm si}\nolimits}( {{\rm \pi}\cdot \Delta t \cdot r_t \cdot f} ).$$

with the two derived system quantities, namely

$$\Delta t = t_1 + t_2,$$
  • and the so-called roll-off factor (in the time domain):
$$r_t = \frac{t_2 - t_1 }{t_2 + t_1 }.$$

Furthermore, the rectangular pulse  ${r(t)}$  and the triangular pulse  ${d(t)}$  are also shown in the graph, both of which can be interpreted as limiting cases of the trapezoidal pulse  ${x(t)}$.




Hints:

  • This exercise belongs to the chapter  Fourier Transform Theorems.
  • You can check your results using the two interactive applets  
Pulses and Spectra,
Frequency & Impulse Responses.


Questions

1

What is the equivalent pulse duration and the rolloff factor of  ${x(t)}$?

$\Delta t \ = \ $

 $\text{ms}$
$r_t\hspace{0.3cm} = \ $

2

Which statements are true regarding the spectral function  ${X(f)}$ ?

The spectral value at frequency  $f = 0$  is equal to  $20 \,\text{mV/Hz}$.
For the phase function the values  $0$  and  $\pi$  $(180^{\circ})$  are possible.
${X(f)}$  only has zeros at all multiples of  $100 \,\text{Hz}$.

3

Which statements are true regarding the spectral function  ${R(f)}$ ?

The spectral value at frequency  $f = 0$  is equal to  ${X(f = 0)}$.
The values  $0$  and  $\pi$  $(180^{\circ})$  are possible for the phase function.
${R(f)}$  only has zeros at all multiples of  $100 \,\text{Hz}$.

4

Which statements are true regarding the spectral function  ${D(f)}$ ?

The spectral value at frequency  $f = 0$  is equal to  ${X(f = 0)}$.
The values  $0$  and  $\pi$  $(180^{\circ})$  are possible for the phase function.
${D(f)}$  only has zeros at all multiples of  $100 \,\text{Hz}$.


Solution

(1)  The equivalent pulse duration is  $\Delta t = t_1 + t_2 \;\underline{= 10 \,\text{ms}}$  and the rolloff factor is  $r_t = 2/10 \;\underline{= 0.2}$.


(2)  Proposed solutions 2 and 3 are correct:

  • The spectral value at  $f = 0$  is  $A \cdot \Delta t = 10 \,\text{mV/Hz}$.
  • Since  ${X(f)}$  is real and can assume both positive and negative values, only the two phase values  $0$  und  $\pi$  are possible.
  • Zeros exist due to the first si–function at all multiples of  $1/\Delta t = 100\, \text{Hz}$.
  • The second si–function leads to zero crossings at intervals of  $1/(r_t \cdot \Delta t) = 500 \,\text{Hz}$.  These coincide exactly with the zeros of the first si–function.


(3)  All proposed solutions are correct:

  • With the equivalent pulse duration  $\Delta t = 10 \,\text{ms}$  and the rolloff factor  $r_t = 0$  one obtains:   $R( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {{\rm{\pi }} \cdot \Delta t \cdot f} ).$
  • It follows that  $R( f = 0) = A \cdot \Delta t = X( f = 0).$


(4)  Proposed solutions 2 and 3 are correct:

  • For the triangular pulse, the rolloff factor is  $r_t = 1$.
  • The equivalent pulse duration is  $\Delta t = 10 \,\text{ms}$.  It follows that   $D( f ) = A \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ^2 ( {{\rm{\pi }} \cdot \Delta t \cdot f} )$  and  $D( f = 0) = A \cdot \Delta t = X( f = 0)$.
  • Since  ${D(f)}$  cannot become negative, the phase  $[{\rm arc} \; {D(f)}]$  is always zero.  The phase value  $\pi$  $(180°)$  is therefore not possible with the triangular pulse.