Difference between revisions of "Aufgaben:Exercise 3.5: Circuit with R, L and C"

From LNTwww
m (Guenter verschob die Seite 3.5 Schaltung mit R, L nach 3.5 Schaltung mit R und L)
 
(44 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Laplace–Rücktransformation
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform
 
}}
 
}}
  
[[File:P_ID1776__LZI_A_3_5.png|right|]]
+
[[File:P_ID1776__LZI_A_3_5.png|right|frame|Two-port network with  $R$, $L$, $C$]]
:Wir betrachten einen Vierpol mit dem Widerstand <i>R</i> = 100 &Omega; im Längszweig, während im Querzweig eine Induktivität <i>L</i> und eine Kapazität <i>C</i> in Serie geschaltet sind. Darunter gezeichnet ist das Pol&ndash;Nullstellen&ndash;Diagramm.
+
We consider a two-port network with the resistance &nbsp;$R = 100 \ \rm \Omega$&nbsp; in the longitudinal branch,&nbsp; while in the transverse branch an inductance &nbsp;$L$&nbsp; and a capacitance &nbsp;$C$&nbsp; are connected in series.&nbsp; The pole&ndash;zero diagram is drawn below.
  
:Beachten Sie die Normierung der komplexen Frequenz <i>p</i> = j2&pi;<i>f</i> auf den Wert 1/<i>T</i> mit  <i>T</i> = 1 &mu;s. Dies hat zur Folge, dass zum Beispiel der Pol bei &ndash;1 in der Realität bei &ndash;10<sup>6</sup> &middot; 1/s liegt.
+
Note the normalization of the complex frequency &nbsp;$p = {\rm j} \cdot 2 \pi f$&nbsp; to the value &nbsp;$1/T$&nbsp; with &nbsp;$T = 1 \ \rm &micro; s$.&nbsp; As a consequence, for example the pole at &nbsp;$-1$&nbsp; is at &nbsp;$-10^6 \cdot \ \rm 1/s$&nbsp; in reality.
  
:Zur Berechnung von Zeitfunktionen kann man den Residuensatz anwenden. Bei <i>N</i> einfachen Polen setzt sich das Ausgangssignal <i>y</i>(<i>t</i>) aus <i>N</i> Eigenschwingungen (den sog. <i>Residuen</i>) zusammen. Bei einem einfachen Pol bei <i>p</i><sub>x<i>i</i></sub> gilt für das das Residuum:
+
The residue theorem can be applied to compute time functions:  
 +
*For&nbsp; $N$&nbsp; simple poles, the output &nbsp;$y(t)$&nbsp; is composed of&nbsp; $N$&nbsp; natural oscillations ("residuals")&nbsp;.  
 +
*For a simple pole at &nbsp;$p_{{\rm x}i}$,&nbsp; the following holds for the residual:
 
:$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}}
 
:$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}}
 
  \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}=
 
  \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}=
Line 16: Line 18:
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
:Dieser Ansatz funktioniert aber nur dann, wenn die Anzahl <i>Z</i> der Nullstellen kleiner ist als <i>N</i>, in dieser Aufgabe beispielsweise dann, wenn die Sprungantwort <i>y</i>(<i>t</i>) berechnet wird. In diesem Fall ist <i>Z</i> = 2 und <i>N</i> = 3, da zusätzlich die Sprungantwort am Eingang durch <i>X</i><sub>L</sub>(<i>p</i>) = 1/<i>p</i>  berücksichtigt werden muss.
+
:However, this approach only works if the number&nbsp; $Z$&nbsp; of zeros is less than&nbsp; $N$.&nbsp; In this exercise,&nbsp; for example if the step response &nbsp;$\sigma(t)$&nbsp; is computed.&nbsp; In this case, &nbsp;$Z = 2$&nbsp; and &nbsp;$N = 3$ hold since the step function at the input must additionally be taken into account by &nbsp;$X_{\rm L}(p) = 1/p$&nbsp;.
  
:Für die Berechnung der Impulsantwort <i>h</i>(<i>t</i>) funktioniert diese Vorgehensweise wegen <i>Z</i> = <i>N</i> = 2 nicht. Hier kann aber die Tatsache berücksichtigt werden, dass das Integral über die Impulsantwort <i>h</i>(<i>t</i>) die Sprungantwort <i>y</i>(<i>t</i>) ergibt.
+
*This approach does not work for the computation of the impulse response &nbsp;$h(t)$&nbsp; due to &nbsp;$Z = N =2$&nbsp;.  
 +
*Here,&nbsp; the fact that the integral over the impulse response &nbsp;$h(t)$&nbsp; results in the step response &nbsp;$\sigma(t)$&nbsp; can be considered.
  
:<b>Hinweis:</b> Die Aufgabe gehört zum Themenkomplex von Kapitel 3.3.
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
Please note:
 +
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
 +
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Funktion hat dieser Vierpol? Handelt es sich um
+
{What is the function of the two-port network considered here?&nbsp; Is it
|type="[]"}
+
|type="()"}
- einen Tiefpass,
+
- a low-pass filter,
- einen Hochpass,
+
- a high-pass filter,
- einen Bandpass,
+
- a band-pass filter,
+ eine Bandsperre?
+
+ a band-stop filter?
  
  
{Berechnen Sie <i>L</i> und <i>C</i> für die vorgegebene Pol&ndash;Nullstellen&ndash;Konfiguration. Berücksichtigen Sie den Normierungswert 1/<i>T</i> und den Widerstand <i>R</i> = 100 &Omega;.
+
{Compute&nbsp; $L$&nbsp; and&nbsp; $C$&nbsp; for the given pole&ndash;zero configuration.&nbsp; Consider the normalization value &nbsp;$1/T$&nbsp; and the resistance &nbsp;$R = 100 \ \rm \Omega$.
 
|type="{}"}
 
|type="{}"}
$L$ = { 20 3% } $\mu H$
+
$L \hspace{0.24cm} = \ $ { 20 3% } $\ \rm &micro; H$
$C$ = { 12.5 3% } $nF$
+
$C \hspace{0.2cm} = \ $ { 12.5 3% } $\ \rm nF$
  
  
{Berechnen Sie das Ausgangssignal <i>y</i>(<i>t</i>), wenn am Eingang eine Sprungfunktion <i>&sigma;</i>(<i>t</i>) anliegt. Geben Sie die folgenden Signalwerte ein:
+
{Compute the output signal &nbsp;$y(t) = \sigma(t)$ if a step function &nbsp;$x(t) = \gamma(t)$ is applied to the input.&nbsp; Enter the following signal values:
 
|type="{}"}
 
|type="{}"}
$y(t = 0)$ = { 1 3% }
+
$y(t = 0) \ = \ $ { 1 3% }
$y(t = 0.5 \mu s)$ = { 0.215 3% }
+
$y(t = 0.5 \ \rm &micro; s) \ =  \ $ { 0.215 3% }
$y(t = 2 \mu s)$ = { 0.775 3% }
+
$y(t = 2.0  \ \rm &micro; s) \ =  \ $ { 0.775 3% }
$y(t = 5 \mu s)$ = { 0.989 3% }
+
$y(t = 5.0  \ \rm&micro; s) \ =  \ $ { 0.989 3% }
  
  
{Berechnen Sie die Impulsantwort <i>h</i>(<i>t</i>), insbesondere für die Zeitpunkte <i>t</i> = 0 und <i>t</i> = 1 &mu;s. Welche der folgenden Aussagen treffen zu?
+
{Compute the impulse response &nbsp;$h(t)$ in particular for times &nbsp;$t = 0$&nbsp; and &nbsp;$t = 1 \ \rm &micro; s$.&nbsp; Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ <i>h</i>(<i>t</i>) beinhaltet eine Diracfunktion bei <i>t</i> = 0.
+
+ $h(t)$&nbsp; includes a Dirac delta function at &nbsp;$t = 0$.
- Der kontinuierliche Anteil von <i>h</i>(<i>t</i>) ist im gesamten Bereich negativ.
+
- The continuous part of &nbsp;$h(t)$&nbsp; is negative in the whole range.
+ Der kontinuierliche Anteil von <i>h</i>(<i>t</i>) besitzt ein Maximum.
+
+ The continuous part of &nbsp;$h(t)$&nbsp; has a maximum.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Bei extrem tiefen Frequenzen (<i>f</i> &#8594; 0) hat die Kapazität <i>C</i> einen unendlich großen Widerstand und bei sehr hohen Frequenzen (<i>f</i> &#8594; &#8734;) die Induktivität <i>L</i>. In beiden Fällen gilt <i>Y</i>(<i>f</i>) = <i>X</i>(<i>f</i>) &#8658; <i>H</i>(<i>f</i>) = 1. Bei der Resonanzfrequenz <i>f</i><sub>0</sub> wirkt dagegen die <i>LC</i>&ndash;Serienschaltung als Kurzschluss und es gilt <i>H</i>(<i>f</i><sub>0</sub>) = 0. Daraus folgt allein aus dem Blockschaltbild: Es handelt sich um eine <u>Bandsperre</u>.
+
'''(1)'''&nbsp; <u>Suggested solution 4</u>&nbsp; is correct:
 +
*At extremely low frequencies &nbsp;$(f \rightarrow 0)$,&nbsp; the capacitance&nbsp; $C$&nbsp; has infinite resistance and at very high frequencies &nbsp;$(f \rightarrow \infty)$&nbsp; the inductance&nbsp; $L$.  
 +
*In both cases, &nbsp;$Y(f) = X(f)$ &nbsp; &#8658; &nbsp; $H(f) = 1$&nbsp; holds.  
 +
*In contrast, the LC series connection acts as a short circuit at the resonance frequency &nbsp;$f_0$&nbsp; and &nbsp;$H(f = f_0) = 0$&nbsp; holds.  
 +
*The followiong follows from the block diagram alone: &nbsp; It is a <u>band-stop filter</u>.
 +
 
 +
 
  
:<b>2.</b>&nbsp;&nbsp;Aus dem Pol&ndash;Nullstellen&ndash;Diagramm ergibt sich die folgende <i>p</i>&ndash;Übertragungsfunktion (ohne den Normierungsfaktor 1/<i>T</i>):
+
'''(2)'''&nbsp; The following &nbsp;$p$&ndash;transfer function&nbsp; $($without the normalization factor&nbsp; $1/T)$&nbsp; is obtained from the pole&ndash;zero diagram:
 
:$$H_{\rm L}(p)=  \frac {(p - {\rm  j} \cdot 2)(p + {\rm  j} \cdot
 
:$$H_{\rm L}(p)=  \frac {(p - {\rm  j} \cdot 2)(p + {\rm  j} \cdot
 
2)} {(p +1)(p +4 )}=  \frac {p^2 +4} {p^2 + 5 \cdot p +4}
 
2)} {(p +1)(p +4 )}=  \frac {p^2 +4} {p^2 + 5 \cdot p +4}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
:Unter Berücksichtigung der Spannungsteilereigenschaften erhält man mit dem Blindwiderstand <i>pL</i> der Induktivität und dem Blindwiderstand 1/(<i>pC</i>) der Kapazität für die obere Schaltung:
+
*The capacitance for the circuit is obtained considering the voltage divider properties with the reactance &nbsp;$p \cdot L$&nbsp; of the inductance and the reactance &nbsp;$1/(p \cdot C)$&nbsp; of the capacitance:
 
:$$H_{\rm L}(p)=  \frac { p\cdot L +1/(pC) }
 
:$$H_{\rm L}(p)=  \frac { p\cdot L +1/(pC) }
 
  {R + p \cdot L +1/(pC) }=  \frac { p^2 +1/(pC) }
 
  {R + p \cdot L +1/(pC) }=  \frac { p^2 +1/(pC) }
 
  {p^2 + p \cdot {R}/{L} +1/(pC) }\hspace{0.05cm} .$$
 
  {p^2 + p \cdot {R}/{L} +1/(pC) }\hspace{0.05cm} .$$
:Durch Vergleich erkennt man unter Berücksichtigung des Normierungsfaktors 1/<i>T</i> = 10<sup>6</sup> 1/s:
+
*Taking into account the normalization factor &nbsp;$1/T= 10^6 \cdot \rm  1/s$&nbsp; and by comparison, the following is found:
:$$\frac{R}{L} \hspace{0.25cm} =  \hspace{0.2cm} 5 \cdot 10^{6 }\, {\rm 1/s}
+
:$${R}/{L} \hspace{0.25cm} =  \hspace{0.2cm} 5 \cdot 10^{6 }\, {\rm 1/s}
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}L= \frac{100\, {\rm \Omega}}{5 \cdot 10^6 \, {\rm
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}L= \frac{100\, {\rm \Omega}}{5 \cdot 10^6 \, {\rm
  1/s}}\hspace{0.15cm}\underline{= 20\,{\rm \mu H} \hspace{0.05cm}} ,\\
+
  1/s}}\hspace{0.15cm}\underline{= 20\,{\rm &micro; H} \hspace{0.05cm}} ,$$
\frac{1}{LC} \hspace{0.25cm} =  \hspace{0.2cm}4 \cdot 10^{12 }\, {\rm 1/s^2}
+
:$${1}/({LC}) \hspace{0.25cm} =  \hspace{0.2cm}4 \cdot 10^{12 }\, {\rm 1/s^2}
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}C= \frac{1}{4 \cdot 10^{12 }\, {\rm
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}C= \frac{1}{4 \cdot 10^{12 }\, {\rm
 
  1/s^2}\cdot 2 \cdot 10^{-5 }\, {\rm
 
  1/s^2}\cdot 2 \cdot 10^{-5 }\, {\rm
Line 79: Line 97:
 
  } \hspace{0.15cm}\underline{= 12.5\,{\rm nF}} \hspace{0.05cm} .$$
 
  } \hspace{0.15cm}\underline{= 12.5\,{\rm nF}} \hspace{0.05cm} .$$
  
:<b>3.</b>&nbsp;&nbsp;Die Sprungfunktion am Eingang wird durch <i>X</i><sub>L</sub>(<i>p</i>) = 1/<i>p</i> berücksichtigt. Damit ergibt sich
+
 
 +
 
 +
'''(3)'''&nbsp; The step function at the input is accounted for by &nbsp;$X_{\rm L}(p) = 1/p$&nbsp;. This results in
 
:$$Y_{\rm L}(p)=  \frac {p^2 +4} {p \cdot (p +1)\cdot(p +4 )}
 
:$$Y_{\rm L}(p)=  \frac {p^2 +4} {p \cdot (p +1)\cdot(p +4 )}
  \hspace{0.05cm} ,$$
+
  \hspace{0.05cm}, $$
:woraus man durch Anwendung des Residuensatzes die Zeitfunktion <i>y</i>(<i>t</i>) ermitteln kann:
+
whereof the time function &nbsp;$y(t)$&nbsp; can be determined by applying the residue theorem:
 
:$$y_1(t) \hspace{0.25cm} =  \hspace{0.2cm}
 
:$$y_1(t) \hspace{0.25cm} =  \hspace{0.2cm}
 
  \frac {p^2 +4} { (p +1)\cdot(p +4 )} \cdot  {\rm e}^{\hspace{0.05cm}p
 
  \frac {p^2 +4} { (p +1)\cdot(p +4 )} \cdot  {\rm e}^{\hspace{0.05cm}p
 
  \hspace{0.05cm}t}
 
  \hspace{0.05cm}t}
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}0}= 1
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}0}= 1
  \hspace{0.05cm} ,\\
+
  \hspace{0.05cm} ,$$
y_2(t) \hspace{0.25cm} =  \hspace{0.2cm}
+
:$$ y_2(t) \hspace{0.25cm} =  \hspace{0.2cm}
 
  \frac {p^2 +4} { p\cdot(p +4 )} \cdot  {\rm e}^{\hspace{0.05cm}p
 
  \frac {p^2 +4} { p\cdot(p +4 )} \cdot  {\rm e}^{\hspace{0.05cm}p
 
  \hspace{0.05cm}t}
 
  \hspace{0.05cm}t}
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= -\frac {5}{3}\cdot  {\rm e}^{
+
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= - {5}/{3}\cdot  {\rm e}^{
 
  \hspace{0.05cm}-t}
 
  \hspace{0.05cm}-t}
  \hspace{0.05cm} ,\\
+
  \hspace{0.05cm} ,$$
y_3(t) \hspace{0.25cm} =  \hspace{0.2cm}
+
:$$ y_3(t) \hspace{0.25cm} =  \hspace{0.2cm}
 
  \frac {p^2 +4} { p\cdot(p +1 )} \cdot  {\rm e}^{\hspace{0.05cm}p
 
  \frac {p^2 +4} { p\cdot(p +1 )} \cdot  {\rm e}^{\hspace{0.05cm}p
 
  \hspace{0.05cm}t}
 
  \hspace{0.05cm}t}
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-4}= \frac {5}{3}\cdot  {\rm e}^{
+
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-4}= {5}/{3}\cdot  {\rm e}^{
 
  \hspace{0.05cm}-4t}$$
 
  \hspace{0.05cm}-4t}$$
:$$\Rightarrow \hspace{0.3cm}y(t)= y_1(t)+y_2(t)+y_3(t)= 1- \frac
+
:$$\Rightarrow \hspace{0.3cm}y(t)= y_1(t)+y_2(t)+y_3(t)= 1-  
{5}{3}\cdot  {\rm e}^{ \hspace{0.05cm}-t/T}+\frac {5}{3}\cdot  {\rm
+
{5}/{3}\cdot  {\rm e}^{ \hspace{0.05cm}-t/T}+\ {5}/{3}\cdot  {\rm
 
e}^{
 
e}^{
 
  \hspace{0.05cm}-4t/T}
 
  \hspace{0.05cm}-4t/T}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
:Hierbei ist berücksichtigt, dass die bei dieser Rechnung nicht berücksichtigte Konstante 10<sup>6</sup> &middot; 1/s durch die Zeitnormierung auf <i>T</i> = 1 &mu;s ausgeglichen werden kann. Die gesuchten Signalwerte lauten:
+
 
 +
[[File:P_ID1778__LZI_A_3_5_c.png|right|frame|Step response of the RLC resonant circuit]]
 +
Here,&nbsp; it is taken into account that the constant &nbsp;$10^6 \cdot \rm  1/s$,&nbsp; which is not considered in this calculation,&nbsp; is compensated for by time normalization to &nbsp;$T = 1 \ \rm &micro; s$.  
 +
 
 +
The signal values which are looked for are:
 +
 
 
:$$y(t = 0) \hspace{0.05cm}\underline{= 1.000}\hspace{0.05cm},  
 
:$$y(t = 0) \hspace{0.05cm}\underline{= 1.000}\hspace{0.05cm},  
\hspace{0.15cm}y(t = 0.5\,{\rm \mu s}) \hspace{0.05cm}\underline{= 0.215}\hspace{0.05cm},  
+
\hspace{0.15cm}y(t = 0.5\,{\rm &micro; s}) \hspace{0.05cm}\underline{= 0.215}\hspace{0.05cm}, $$
\hspace{0.15cm}y(t = 2\,{\rm \mu s}) \hspace{0.05cm}\underline{= 0.775}\hspace{0.05cm},  
+
:$$y(t = 2\,{\rm &micro; s}) \hspace{0.05cm}\underline{= 0.775}\hspace{0.05cm},  
\hspace{0.15cm}y(t = 5\,{\rm \mu s}) \hspace{0.05cm}\underline{= 0.989}\hspace{0.05cm}. $$
+
\hspace{0.15cm}y(t = 5\,{\rm &micro; s}) \hspace{0.05cm}\underline{= 0.989}\hspace{0.05cm}. $$
:Die folgende Grafik zeigt den Signalverlauf. Die gesuchten Zahlenwerte sind nochmals eingetragen.
 
[[File:P_ID1778__LZI_A_3_5_c.png|center|]]
 
:Man erkennt aus dieser Darstellung:
 
  
:* Da extrem hohe Frequenzen durch das System (Bandsperre) nicht beeinflusst werden, ist auch im Ausgangssignal <i>y</i>(<i>t</i>) der Sprung von 0 auf 1 mit unendlich großer Flankensteilheit zu erkennen.
+
The graph shows the signal curve.&nbsp; The searched-for numerical values are inscribed again.
  
:* Wegen <i>H</i>(<i>f</i> = 0) = 1 ergibt der Grenzwert von <i>y</i>(<i>t</i>) für <i>t</i> &#8594; &#8734; folgerichtig ebenfalls den Wert 1.
+
The following can be seen from this representation:
 +
* Since extremely high frequencies are not affected by the system (band-stop filter),&nbsp; the jump from &nbsp;$0$&nbsp; to &nbsp;$1$&nbsp; with infinite edge steepness can also be seen in the output signal &nbsp;$y(t)$.
 +
* The limit of &nbsp;$y(t)$&nbsp; for &nbsp;$t &#8594; \infty$&nbsp; consequently also yields the value&nbsp; $1$&nbsp; because of &nbsp;$H(f = 0) = 1$.
 +
* There is a drop in the signal curve due to the LC resonance frequency at &nbsp;$f_0 = 1/\pi$&nbsp; (in&nbsp; $\rm MHz)$&nbsp;.
 +
*The signal minimum of &nbsp;$\approx 0.215$&nbsp; is at approximately &nbsp;$t = 0.5 \ \rm &micro; s$.
  
:* Aufgrund der <i>LC</i>&ndash;Resonanzfrequenz bei <i>f</i><sub>0</sub> = 1/&pi; (in MHz) kommt es zu einem Einbruch im Signalverlauf. Das Signalminimum von ca. 0.215 liegt bei etwa 0.5 &mu;s.
 
  
:<b>4.</b>&nbsp;&nbsp;Die Impulsantwort <i>h</i>(<i>t</i>) ergibt sich aus der Sprungantwort <i>y</i>(<i>t</i>) durch Differentiation:
+
[[File:P_ID1779__LZI_A_3_5_d.png|right|frame|Impulse response of the RLC low-pass filter]]
 +
'''(4)'''&nbsp; <u>Suggested solutions 1 and 3</u>&nbsp; are correct:
 +
*The impulse response &nbsp;$h(t)$&nbsp; is obtained from the step response &nbsp;$\sigma(t)=y(t)$&nbsp; by differentiation:
 
:$$h(t)= \frac{{\rm d}\hspace{0.1cm}y(t)}{{\rm
 
:$$h(t)= \frac{{\rm d}\hspace{0.1cm}y(t)}{{\rm
 
d}t}= \delta (t) + \frac {5}{3T}\cdot  {\rm e}^{
 
d}t}= \delta (t) + \frac {5}{3T}\cdot  {\rm e}^{
Line 125: Line 152:
 
  \hspace{0.05cm}-4t/T}
 
  \hspace{0.05cm}-4t/T}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
:Der <u>Lösungsvorschlag 1</u> ist somit richtig, da die Differentiation einer Sprungfunktion die Diracfunktion liefert. Für den kontinuierlichen Anteil von <i>h</i>(<i>t</i>) erhält man folgende Zahlenwerte:
+
*The first suggested solution is thus correct since differentiation of a step function&nbsp; $\gamma(t)$&nbsp; yields the Dirac delta function&nbsp; $\delta(t)$.  
:$$T \cdot h(t = 0 )\hspace{0.25cm} =  \hspace{0.2cm} \frac {5}{3}- \frac {20}{3}= -5
+
*The following numerical values are obtained for the continuous part of &nbsp;$h(t)$&nbsp;:
  \hspace{0.05cm} ,\\
+
:$$T \cdot h(t = 0 )\hspace{0.25cm} =  \hspace{0.2cm} {5}/{3}- {20}/{3}= -5
T \cdot h(t = T )\hspace{0.25cm} =  \hspace{0.2cm} \frac {5}{3}\cdot  {\rm e}^{
+
  \hspace{0.05cm} ,$$
  \hspace{0.05cm}-1}- \frac {20}{3}\cdot  {\rm e}^{
+
:$$ T \cdot h(t = T )\hspace{0.25cm} =  \hspace{0.2cm} {5}/{3}\cdot  {\rm e}^{
  \hspace{0.05cm}-4}= \frac {5}{3}\cdot  0.368- \frac {20}{3}\cdot
+
  \hspace{0.05cm}-1}- {20}/{3}\cdot  {\rm e}^{
 +
  \hspace{0.05cm}-4}= {5}/{3}\cdot  0.368- {20}/{3}\cdot
 
  0.018\approx 0.491
 
  0.018\approx 0.491
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
:Da <i>h</i>(<i>t</i>) im Grenzfall für <i>t</i> &#8594; &#8734; gegen Null strebt, ist der <u>dritte Lösungsvorschlag</u> richtig im Gegensatz zum zweiten. Der Verlauf von <i>h</i>(<i>t</i>) ist in der unteren Grafik dargestellt.
+
*Since &nbsp;$h(t)$&nbsp; tends to zero in the limiting case for &nbsp;$t &#8594; \infty$,&nbsp; the third proposed solution is also correct in contrast to the second one.  
[[File:P_ID1779__LZI_A_3_5_d.png|center|]]
+
*The curve of &nbsp;$h(t)$&nbsp; is shown in the adjacent diagram.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^3.3 Laplace–Rücktransformation^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^3.3 Inverse Laplace Transform^]]

Latest revision as of 11:12, 10 November 2021

Two-port network with  $R$, $L$, $C$

We consider a two-port network with the resistance  $R = 100 \ \rm \Omega$  in the longitudinal branch,  while in the transverse branch an inductance  $L$  and a capacitance  $C$  are connected in series.  The pole–zero diagram is drawn below.

Note the normalization of the complex frequency  $p = {\rm j} \cdot 2 \pi f$  to the value  $1/T$  with  $T = 1 \ \rm µ s$.  As a consequence, for example the pole at  $-1$  is at  $-10^6 \cdot \ \rm 1/s$  in reality.

The residue theorem can be applied to compute time functions:

  • For  $N$  simple poles, the output  $y(t)$  is composed of  $N$  natural oscillations ("residuals") .
  • For a simple pole at  $p_{{\rm x}i}$,  the following holds for the residual:
$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{0.05cm} .$$
However, this approach only works if the number  $Z$  of zeros is less than  $N$.  In this exercise,  for example if the step response  $\sigma(t)$  is computed.  In this case,  $Z = 2$  and  $N = 3$ hold since the step function at the input must additionally be taken into account by  $X_{\rm L}(p) = 1/p$ .
  • This approach does not work for the computation of the impulse response  $h(t)$  due to  $Z = N =2$ .
  • Here,  the fact that the integral over the impulse response  $h(t)$  results in the step response  $\sigma(t)$  can be considered.




Please note:



Questions

1

What is the function of the two-port network considered here?  Is it

a low-pass filter,
a high-pass filter,
a band-pass filter,
a band-stop filter?

2

Compute  $L$  and  $C$  for the given pole–zero configuration.  Consider the normalization value  $1/T$  and the resistance  $R = 100 \ \rm \Omega$.

$L \hspace{0.24cm} = \ $

$\ \rm µ H$
$C \hspace{0.2cm} = \ $

$\ \rm nF$

3

Compute the output signal  $y(t) = \sigma(t)$ if a step function  $x(t) = \gamma(t)$ is applied to the input.  Enter the following signal values:

$y(t = 0) \ = \ $

$y(t = 0.5 \ \rm µ s) \ = \ $

$y(t = 2.0 \ \rm µ s) \ = \ $

$y(t = 5.0 \ \rmµ s) \ = \ $

4

Compute the impulse response  $h(t)$ in particular for times  $t = 0$  and  $t = 1 \ \rm µ s$.  Which of the following statements are true?

$h(t)$  includes a Dirac delta function at  $t = 0$.
The continuous part of  $h(t)$  is negative in the whole range.
The continuous part of  $h(t)$  has a maximum.


Solution

(1)  Suggested solution 4  is correct:

  • At extremely low frequencies  $(f \rightarrow 0)$,  the capacitance  $C$  has infinite resistance and at very high frequencies  $(f \rightarrow \infty)$  the inductance  $L$.
  • In both cases,  $Y(f) = X(f)$   ⇒   $H(f) = 1$  holds.
  • In contrast, the LC series connection acts as a short circuit at the resonance frequency  $f_0$  and  $H(f = f_0) = 0$  holds.
  • The followiong follows from the block diagram alone:   It is a band-stop filter.


(2)  The following  $p$–transfer function  $($without the normalization factor  $1/T)$  is obtained from the pole–zero diagram:

$$H_{\rm L}(p)= \frac {(p - {\rm j} \cdot 2)(p + {\rm j} \cdot 2)} {(p +1)(p +4 )}= \frac {p^2 +4} {p^2 + 5 \cdot p +4} \hspace{0.05cm} .$$
  • The capacitance for the circuit is obtained considering the voltage divider properties with the reactance  $p \cdot L$  of the inductance and the reactance  $1/(p \cdot C)$  of the capacitance:
$$H_{\rm L}(p)= \frac { p\cdot L +1/(pC) } {R + p \cdot L +1/(pC) }= \frac { p^2 +1/(pC) } {p^2 + p \cdot {R}/{L} +1/(pC) }\hspace{0.05cm} .$$
  • Taking into account the normalization factor  $1/T= 10^6 \cdot \rm 1/s$  and by comparison, the following is found:
$${R}/{L} \hspace{0.25cm} = \hspace{0.2cm} 5 \cdot 10^{6 }\, {\rm 1/s} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}L= \frac{100\, {\rm \Omega}}{5 \cdot 10^6 \, {\rm 1/s}}\hspace{0.15cm}\underline{= 20\,{\rm µ H} \hspace{0.05cm}} ,$$
$${1}/({LC}) \hspace{0.25cm} = \hspace{0.2cm}4 \cdot 10^{12 }\, {\rm 1/s^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}C= \frac{1}{4 \cdot 10^{12 }\, {\rm 1/s^2}\cdot 2 \cdot 10^{-5 }\, {\rm \Omega \cdot s} } \hspace{0.15cm}\underline{= 12.5\,{\rm nF}} \hspace{0.05cm} .$$


(3)  The step function at the input is accounted for by  $X_{\rm L}(p) = 1/p$ . This results in

$$Y_{\rm L}(p)= \frac {p^2 +4} {p \cdot (p +1)\cdot(p +4 )} \hspace{0.05cm}, $$

whereof the time function  $y(t)$  can be determined by applying the residue theorem:

$$y_1(t) \hspace{0.25cm} = \hspace{0.2cm} \frac {p^2 +4} { (p +1)\cdot(p +4 )} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}0}= 1 \hspace{0.05cm} ,$$
$$ y_2(t) \hspace{0.25cm} = \hspace{0.2cm} \frac {p^2 +4} { p\cdot(p +4 )} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= - {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-t} \hspace{0.05cm} ,$$
$$ y_3(t) \hspace{0.25cm} = \hspace{0.2cm} \frac {p^2 +4} { p\cdot(p +1 )} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-4}= {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-4t}$$
$$\Rightarrow \hspace{0.3cm}y(t)= y_1(t)+y_2(t)+y_3(t)= 1- {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-t/T}+\ {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-4t/T} \hspace{0.05cm} .$$
Step response of the RLC resonant circuit

Here,  it is taken into account that the constant  $10^6 \cdot \rm 1/s$,  which is not considered in this calculation,  is compensated for by time normalization to  $T = 1 \ \rm µ s$.

The signal values which are looked for are:

$$y(t = 0) \hspace{0.05cm}\underline{= 1.000}\hspace{0.05cm}, \hspace{0.15cm}y(t = 0.5\,{\rm µ s}) \hspace{0.05cm}\underline{= 0.215}\hspace{0.05cm}, $$
$$y(t = 2\,{\rm µ s}) \hspace{0.05cm}\underline{= 0.775}\hspace{0.05cm}, \hspace{0.15cm}y(t = 5\,{\rm µ s}) \hspace{0.05cm}\underline{= 0.989}\hspace{0.05cm}. $$

The graph shows the signal curve.  The searched-for numerical values are inscribed again.

The following can be seen from this representation:

  • Since extremely high frequencies are not affected by the system (band-stop filter),  the jump from  $0$  to  $1$  with infinite edge steepness can also be seen in the output signal  $y(t)$.
  • The limit of  $y(t)$  for  $t → \infty$  consequently also yields the value  $1$  because of  $H(f = 0) = 1$.
  • There is a drop in the signal curve due to the LC resonance frequency at  $f_0 = 1/\pi$  (in  $\rm MHz)$ .
  • The signal minimum of  $\approx 0.215$  is at approximately  $t = 0.5 \ \rm µ s$.


Impulse response of the RLC low-pass filter

(4)  Suggested solutions 1 and 3  are correct:

  • The impulse response  $h(t)$  is obtained from the step response  $\sigma(t)=y(t)$  by differentiation:
$$h(t)= \frac{{\rm d}\hspace{0.1cm}y(t)}{{\rm d}t}= \delta (t) + \frac {5}{3T}\cdot {\rm e}^{ \hspace{0.05cm}-t/T}- \frac {20}{3T}\cdot {\rm e}^{ \hspace{0.05cm}-4t/T} \hspace{0.05cm} .$$
  • The first suggested solution is thus correct since differentiation of a step function  $\gamma(t)$  yields the Dirac delta function  $\delta(t)$.
  • The following numerical values are obtained for the continuous part of  $h(t)$ :
$$T \cdot h(t = 0 )\hspace{0.25cm} = \hspace{0.2cm} {5}/{3}- {20}/{3}= -5 \hspace{0.05cm} ,$$
$$ T \cdot h(t = T )\hspace{0.25cm} = \hspace{0.2cm} {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-1}- {20}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-4}= {5}/{3}\cdot 0.368- {20}/{3}\cdot 0.018\approx 0.491 \hspace{0.05cm} .$$
  • Since  $h(t)$  tends to zero in the limiting case for  $t → \infty$,  the third proposed solution is also correct in contrast to the second one.
  • The curve of  $h(t)$  is shown in the adjacent diagram.