Difference between revisions of "Aufgaben:Exercise 3.5: Circuit with R, L and C"

From LNTwww
m (Text replacement - "Category:Exercises for Linear and Time-Invariant Systems" to "Category:Linear and Time-Invariant Systems: Exercises")
 
(23 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Laplace–Rücktransformation
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform
 
}}
 
}}
  
[[File:P_ID1776__LZI_A_3_5.png|right|frame|Vierpol mit  $R$,  $L$ und  $C$]]
+
[[File:P_ID1776__LZI_A_3_5.png|right|frame|Two-port network with  $R$, $L$, $C$]]
Wir betrachten einen Vierpol mit dem Widerstand  $R = 100 \ \rm \Omega$  im Längszweig, während im Querzweig eine Induktivität  $L$  und eine Kapazität  $C$  in Serie geschaltet sind. Darunter gezeichnet ist das Pol–Nullstellen–Diagramm.
+
We consider a two-port network with the resistance  $R = 100 \ \rm \Omega$  in the longitudinal branch,  while in the transverse branch an inductance  $L$  and a capacitance  $C$  are connected in series.  The pole–zero diagram is drawn below.
  
Beachten Sie die Normierung der komplexen Frequenz  $p = {\rm j} \cdot 2 \pi f$  auf den Wert  $1/T$  mit   $T = 1 \ \rm µ s$.  Dies hat zur Folge, dass zum Beispiel der Pol bei  $-1$  in Realität bei  $-10^6 \cdot \ \rm 1/s$  liegt.
+
Note the normalization of the complex frequency  $p = {\rm j} \cdot 2 \pi f$  to the value  $1/T$  with  $T = 1 \ \rm µ s$.  As a consequence, for example the pole at  $-1$  is at  $-10^6 \cdot \ \rm 1/s$  in reality.
  
Zur Berechnung von Zeitfunktionen kann man den Residuensatz anwenden:  
+
The residue theorem can be applied to compute time functions:  
*Bei  $N$  einfachen Polen setzt sich der Ausgang  $y(t)$  aus  $N$  Eigenschwingungen (''Residuen'')  zusammen.  
+
*For  $N$  simple poles, the output  $y(t)$  is composed of  $N$  natural oscillations ("residuals") .  
*Bei einem einfachen Pol bei  $p_{{\rm x}i}$  gilt  für das das Residuum:
+
*For a simple pole at  $p_{{\rm x}i}$,  the following holds for the residual:
 
:$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}}
 
:$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}}
 
  \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}=
 
  \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}=
Line 18: Line 18:
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
:Dieser Ansatz funktioniert aber nur dann, wenn die Anzahl  $Z$  der Nullstellen kleiner ist als  $N$, in dieser Aufgabe beispielsweise dann, wenn die Sprungantwort  $\sigma(t)$  berechnet wird.  In diesem Fall ist  $Z = 2$  und  $N = 3$, da zusätzlich die Sprungfunktion am Eingang durch  $X_{\rm L}(p) = 1/p$  berücksichtigt werden muss.
+
:However, this approach only works if the number  $Z$  of zeros is less than  $N$.  In this exercise,  for example if the step response  $\sigma(t)$  is computed.  In this case,  $Z = 2$  and  $N = 3$ hold since the step function at the input must additionally be taken into account by  $X_{\rm L}(p) = 1/p$ .
  
*Für die Berechnung der Impulsantwort  $h(t)$  funktioniert diese Vorgehensweise wegen  $Z = N =2$  nicht.  
+
*This approach does not work for the computation of the impulse response  $h(t)$  due to  $Z = N =2$ .  
*Hier kann man die Tatsache berücksichtigen, dass das Integral über die Impulsantwort  $h(t)$  die Sprungantwort  $\sigma(t)$  ergibt.
+
*Here,  the fact that the integral over the impulse response  $h(t)$  results in the step response  $\sigma(t)$  can be considered.
  
  
Line 28: Line 28:
  
  
 
+
Please note:  
 
+
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
 
 
''Hinweis:''
 
*Die Aufgabe gehört zum Kapitel   [[Linear_and_Time_Invariant_Systems/Laplace–Rücktransformation|Laplace–Rücktransformation]].
 
 
   
 
   
  
Line 38: Line 35:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Funktion hat der hier betrachtete Vierpol?&nbsp; Handelt es sich um
+
{What is the function of the two-port network considered here?&nbsp; Is it
 
|type="()"}
 
|type="()"}
- einen Tiefpass,
+
- a low-pass filter,
- einen Hochpass,
+
- a high-pass filter,
- einen Bandpass,
+
- a band-pass filter,
+ eine Bandsperre?
+
+ a band-stop filter?
  
  
{Berechnen Sie&nbsp; $L$&nbsp; und&nbsp; $C$&nbsp; für die vorgegebene Pol&ndash;Nullstellen&ndash;Konfiguration.&nbsp; Berücksichtigen Sie den Normierungswert &nbsp;$1/T$&nbsp; und den Widerstand &nbsp;$R = 100 \ \rm \Omega$.
+
{Compute&nbsp; $L$&nbsp; and&nbsp; $C$&nbsp; for the given pole&ndash;zero configuration.&nbsp; Consider the normalization value &nbsp;$1/T$&nbsp; and the resistance &nbsp;$R = 100 \ \rm \Omega$.
 
|type="{}"}
 
|type="{}"}
 
$L \hspace{0.24cm} = \ $  { 20 3% } $\ \rm &micro; H$
 
$L \hspace{0.24cm} = \ $  { 20 3% } $\ \rm &micro; H$
Line 55: Line 52:
  
  
{Berechnen Sie das Ausgangssignal &nbsp;$y(t) = \sigma(t)$, wenn am Eingang eine Sprungfunktion &nbsp;$x(t) = \gamma(t)$ anliegt.&nbsp; Geben Sie die folgenden Signalwerte ein:
+
{Compute the output signal &nbsp;$y(t) = \sigma(t)$ if a step function &nbsp;$x(t) = \gamma(t)$ is applied to the input.&nbsp; Enter the following signal values:
 
|type="{}"}
 
|type="{}"}
 
$y(t = 0) \ = \ $  { 1 3% }
 
$y(t = 0) \ = \ $  { 1 3% }
Line 63: Line 60:
  
  
{Berechnen Sie die Impulsantwort &nbsp;$h(t)$, insbesondere für die Zeitpunkte &nbsp;$t = 0$&nbsp; und &nbsp;$t = 1 \ \rm &micro; s$.&nbsp; Welche der folgenden Aussagen treffen zu?
+
{Compute the impulse response &nbsp;$h(t)$ in particular for times &nbsp;$t = 0$&nbsp; and &nbsp;$t = 1 \ \rm &micro; s$.&nbsp; Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ $h(t)$&nbsp; beinhaltet eine Diracfunktion bei &nbsp;$t = 0$.
+
+ $h(t)$&nbsp; includes a Dirac delta function at &nbsp;$t = 0$.
- Der kontinuierliche Anteil von &nbsp;$h(t)$&nbsp; ist im gesamten Bereich negativ.
+
- The continuous part of &nbsp;$h(t)$&nbsp; is negative in the whole range.
+ Der kontinuierliche Anteil von &nbsp;$h(t)$&nbsp; besitzt ein Maximum.
+
+ The continuous part of &nbsp;$h(t)$&nbsp; has a maximum.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 4</u>:
+
'''(1)'''&nbsp; <u>Suggested solution 4</u>&nbsp; is correct:
*Bei extrem tiefen Frequenzen &nbsp;$(f \rightarrow 0)$&nbsp; hat die Kapazität&nbsp; $C$&nbsp; einen unendlich großen Widerstand und bei sehr hohen Frequenzen &nbsp;$(f \rightarrow \infty)$&nbsp; die Induktivität&nbsp; $L$.  
+
*At extremely low frequencies &nbsp;$(f \rightarrow 0)$,&nbsp; the capacitance&nbsp; $C$&nbsp; has infinite resistance and at very high frequencies &nbsp;$(f \rightarrow \infty)$&nbsp; the inductance&nbsp; $L$.  
*In beiden Fällen gilt &nbsp;$Y(f) = X(f)$ &nbsp; &#8658; &nbsp; $H(f) = 1$.  
+
*In both cases, &nbsp;$Y(f) = X(f)$ &nbsp; &#8658; &nbsp; $H(f) = 1$&nbsp; holds.  
*Bei der Resonanzfrequenz &nbsp;$f_0$&nbsp; wirkt dagegen die LC&ndash;Serienschaltung als Kurzschluss und es gilt &nbsp;$H(f = f_0) = 0$.  
+
*In contrast, the LC series connection acts as a short circuit at the resonance frequency &nbsp;$f_0$&nbsp; and &nbsp;$H(f = f_0) = 0$&nbsp; holds.  
*Daraus folgt allein aus dem Blockschaltbild: &nbsp; Es handelt sich um eine <u>Bandsperre</u>.
+
*The followiong follows from the block diagram alone: &nbsp; It is a <u>band-stop filter</u>.
  
  
  
'''(2)'''&nbsp; Aus dem Pol&ndash;Nullstellen&ndash;Diagramm ergibt sich die folgende &nbsp;$p$&ndash;Übertragungsfunktion&nbsp; $($ohne den Normierungsfaktor&nbsp; $1/T)$:
+
'''(2)'''&nbsp; The following &nbsp;$p$&ndash;transfer function&nbsp; $($without the normalization factor&nbsp; $1/T)$&nbsp; is obtained from the pole&ndash;zero diagram:
 
:$$H_{\rm L}(p)=  \frac {(p - {\rm  j} \cdot 2)(p + {\rm  j} \cdot
 
:$$H_{\rm L}(p)=  \frac {(p - {\rm  j} \cdot 2)(p + {\rm  j} \cdot
 
2)} {(p +1)(p +4 )}=  \frac {p^2 +4} {p^2 + 5 \cdot p +4}
 
2)} {(p +1)(p +4 )}=  \frac {p^2 +4} {p^2 + 5 \cdot p +4}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
*Unter Berücksichtigung der Spannungsteilereigenschaften erhält man mit dem Blindwiderstand &nbsp;$p \cdot L$&nbsp; der Induktivität und dem Blindwiderstand &nbsp;$1/(p \cdot C)$&nbsp; der Kapazität für die Schaltung:
+
*The capacitance for the circuit is obtained considering the voltage divider properties with the reactance &nbsp;$p \cdot L$&nbsp; of the inductance and the reactance &nbsp;$1/(p \cdot C)$&nbsp; of the capacitance:
 
:$$H_{\rm L}(p)=  \frac { p\cdot L +1/(pC) }
 
:$$H_{\rm L}(p)=  \frac { p\cdot L +1/(pC) }
 
  {R + p \cdot L +1/(pC) }=  \frac { p^2 +1/(pC) }
 
  {R + p \cdot L +1/(pC) }=  \frac { p^2 +1/(pC) }
 
  {p^2 + p \cdot {R}/{L} +1/(pC) }\hspace{0.05cm} .$$
 
  {p^2 + p \cdot {R}/{L} +1/(pC) }\hspace{0.05cm} .$$
*Durch Vergleich erkennt man unter Berücksichtigung des Normierungsfaktors &nbsp;$1/T= 10^6 \cdot \rm  1/s$:
+
*Taking into account the normalization factor &nbsp;$1/T= 10^6 \cdot \rm  1/s$&nbsp; and by comparison, the following is found:
 
:$${R}/{L} \hspace{0.25cm} =  \hspace{0.2cm} 5 \cdot 10^{6 }\, {\rm 1/s}
 
:$${R}/{L} \hspace{0.25cm} =  \hspace{0.2cm} 5 \cdot 10^{6 }\, {\rm 1/s}
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}L= \frac{100\, {\rm \Omega}}{5 \cdot 10^6 \, {\rm
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}L= \frac{100\, {\rm \Omega}}{5 \cdot 10^6 \, {\rm
Line 102: Line 99:
  
  
'''(3)'''&nbsp; Die Sprungfunktion am Eingang wird durch &nbsp;$X_{\rm L}(p) = 1/p$&nbsp; berücksichtigt. Damit ergibt sich
+
'''(3)'''&nbsp; The step function at the input is accounted for by &nbsp;$X_{\rm L}(p) = 1/p$&nbsp;. This results in
 
:$$Y_{\rm L}(p)=  \frac {p^2 +4} {p \cdot (p +1)\cdot(p +4 )}
 
:$$Y_{\rm L}(p)=  \frac {p^2 +4} {p \cdot (p +1)\cdot(p +4 )}
  \hspace{0.05cm} ,$$
+
  \hspace{0.05cm}, $$
woraus man durch Anwendung des Residuensatzes die Zeitfunktion &nbsp;$y(t)$&nbsp; ermitteln kann:
+
whereof the time function &nbsp;$y(t)$&nbsp; can be determined by applying the residue theorem:
 
:$$y_1(t) \hspace{0.25cm} =  \hspace{0.2cm}
 
:$$y_1(t) \hspace{0.25cm} =  \hspace{0.2cm}
 
  \frac {p^2 +4} { (p +1)\cdot(p +4 )} \cdot  {\rm e}^{\hspace{0.05cm}p
 
  \frac {p^2 +4} { (p +1)\cdot(p +4 )} \cdot  {\rm e}^{\hspace{0.05cm}p
Line 128: Line 125:
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
[[File:P_ID1778__LZI_A_3_5_c.png|right|frame|Sprungantwort des RLC–Schwingkreises ]]
+
[[File:P_ID1778__LZI_A_3_5_c.png|right|frame|Step response of the RLC resonant circuit]]
Hierbei ist berücksichtigt, dass die bei dieser Rechnung nicht berücksichtigte Konstante  &nbsp;$10^6 \cdot \rm  1/s$&nbsp; durch die Zeitnormierung auf &nbsp;$T = 1 \ \rm &micro; s$&nbsp; ausgeglichen wird.  
+
Here,&nbsp; it is taken into account that the constant &nbsp;$10^6 \cdot \rm  1/s$,&nbsp; which is not considered in this calculation,&nbsp; is compensated for by time normalization to &nbsp;$T = 1 \ \rm &micro; s$.  
  
Die gesuchten Signalwerte lauten:
+
The signal values which are looked for are:
  
 
:$$y(t = 0) \hspace{0.05cm}\underline{= 1.000}\hspace{0.05cm},  
 
:$$y(t = 0) \hspace{0.05cm}\underline{= 1.000}\hspace{0.05cm},  
Line 138: Line 135:
 
\hspace{0.15cm}y(t = 5\,{\rm &micro; s}) \hspace{0.05cm}\underline{= 0.989}\hspace{0.05cm}. $$
 
\hspace{0.15cm}y(t = 5\,{\rm &micro; s}) \hspace{0.05cm}\underline{= 0.989}\hspace{0.05cm}. $$
  
Die Grafik zeigt den Signalverlauf.&nbsp; Die gesuchten Zahlenwerte sind nochmals eingetragen.
+
The graph shows the signal curve.&nbsp; The searched-for numerical values are inscribed again.
  
Man erkennt aus dieser Darstellung:
+
The following can be seen from this representation:
* Da extrem hohe Frequenzen durch das System (Bandsperre) nicht beeinflusst werden, ist auch im Ausgangssignal &nbsp;$y(t)$&nbsp; der Sprung von &nbsp;$0$&nbsp; auf &nbsp;$1$&nbsp; mit unendlich großer Flankensteilheit zu erkennen.
+
* Since extremely high frequencies are not affected by the system (band-stop filter),&nbsp; the jump from &nbsp;$0$&nbsp; to &nbsp;$1$&nbsp; with infinite edge steepness can also be seen in the output signal &nbsp;$y(t)$.
* Wegen &nbsp;$H(f = 0) = 1$&nbsp; ergibt der Grenzwert von &nbsp;$y(t)$&nbsp; für &nbsp;$t &#8594; \infty$&nbsp; folgerichtig ebenfalls den Wert $1$.
+
* The limit of &nbsp;$y(t)$&nbsp; for &nbsp;$t &#8594; \infty$&nbsp; consequently also yields the value&nbsp; $1$&nbsp; because of &nbsp;$H(f = 0) = 1$.
* Aufgrund der LC&ndash;Resonanzfrequenz bei &nbsp;$f_0 = 1/\pi$&nbsp; (in&nbsp; $\rm MHz)$&nbsp; kommt es zu einem Einbruch im Signalverlauf.  
+
* There is a drop in the signal curve due to the LC resonance frequency at &nbsp;$f_0 = 1/\pi$&nbsp; (in&nbsp; $\rm MHz)$&nbsp;.  
*Das Signalminimum von &nbsp;$\approx 0.215$&nbsp; liegt bei etwa &nbsp;$t = 0.5 \ \rm &micro; s$.
+
*The signal minimum of &nbsp;$\approx 0.215$&nbsp; is at approximately &nbsp;$t = 0.5 \ \rm &micro; s$.
  
  
[[File:P_ID1779__LZI_A_3_5_d.png|right|frame|Impulsantwort des RLC–Tiefpasses]]
+
[[File:P_ID1779__LZI_A_3_5_d.png|right|frame|Impulse response of the RLC low-pass filter]]
'''(4)'''&nbsp; Richtig sind die  <u>Lösungsvorschläge 1 und 3</u>:
+
'''(4)'''&nbsp; <u>Suggested solutions 1 and 3</u>&nbsp; are correct:
*Die Impulsantwort &nbsp;$h(t)$&nbsp; ergibt sich aus der Sprungantwort &nbsp;$\sigma(t)=y(t)$&nbsp; durch Differentiation:
+
*The impulse response &nbsp;$h(t)$&nbsp; is obtained from the step response &nbsp;$\sigma(t)=y(t)$&nbsp; by differentiation:
 
:$$h(t)= \frac{{\rm d}\hspace{0.1cm}y(t)}{{\rm
 
:$$h(t)= \frac{{\rm d}\hspace{0.1cm}y(t)}{{\rm
 
d}t}= \delta (t) + \frac {5}{3T}\cdot  {\rm e}^{
 
d}t}= \delta (t) + \frac {5}{3T}\cdot  {\rm e}^{
Line 155: Line 152:
 
  \hspace{0.05cm}-4t/T}
 
  \hspace{0.05cm}-4t/T}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
*Der erste  Lösungsvorschlag  ist somit richtig, da die Differentiation einer Sprungfunktion die Diracfunktion liefert.  
+
*The first suggested solution is thus correct since differentiation of a step function&nbsp; $\gamma(t)$&nbsp; yields the Dirac delta function&nbsp; $\delta(t)$.  
*Für den kontinuierlichen Anteil von &nbsp;$h(t)$&nbsp; erhält man folgende Zahlenwerte:
+
*The following numerical values are obtained for the continuous part of &nbsp;$h(t)$&nbsp;:
 
:$$T \cdot h(t = 0 )\hspace{0.25cm} =  \hspace{0.2cm} {5}/{3}- {20}/{3}= -5
 
:$$T \cdot h(t = 0 )\hspace{0.25cm} =  \hspace{0.2cm} {5}/{3}- {20}/{3}= -5
 
  \hspace{0.05cm} ,$$
 
  \hspace{0.05cm} ,$$
Line 164: Line 161:
 
  0.018\approx 0.491
 
  0.018\approx 0.491
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
*Da &nbsp;$h(t)$&nbsp; im Grenzfall für &nbsp;$t &#8594; \infty$&nbsp; gegen Null strebt, ist der dritte Lösungsvorschlag ebenfalls richtig im Gegensatz zum zweiten.  
+
*Since &nbsp;$h(t)$&nbsp; tends to zero in the limiting case for &nbsp;$t &#8594; \infty$,&nbsp; the third proposed solution is also correct in contrast to the second one.  
*Der Verlauf von &nbsp;$h(t)$&nbsp; ist in der nebenstehenden Grafik dargestellt.
+
*The curve of &nbsp;$h(t)$&nbsp; is shown in the adjacent diagram.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 171: Line 168:
  
  
[[Category:Linear and Time-Invariant Systems: Exercises|^3.3 Laplace–Rücktransformation^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^3.3 Inverse Laplace Transform^]]

Latest revision as of 11:12, 10 November 2021

Two-port network with  $R$, $L$, $C$

We consider a two-port network with the resistance  $R = 100 \ \rm \Omega$  in the longitudinal branch,  while in the transverse branch an inductance  $L$  and a capacitance  $C$  are connected in series.  The pole–zero diagram is drawn below.

Note the normalization of the complex frequency  $p = {\rm j} \cdot 2 \pi f$  to the value  $1/T$  with  $T = 1 \ \rm µ s$.  As a consequence, for example the pole at  $-1$  is at  $-10^6 \cdot \ \rm 1/s$  in reality.

The residue theorem can be applied to compute time functions:

  • For  $N$  simple poles, the output  $y(t)$  is composed of  $N$  natural oscillations ("residuals") .
  • For a simple pole at  $p_{{\rm x}i}$,  the following holds for the residual:
$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{0.05cm} .$$
However, this approach only works if the number  $Z$  of zeros is less than  $N$.  In this exercise,  for example if the step response  $\sigma(t)$  is computed.  In this case,  $Z = 2$  and  $N = 3$ hold since the step function at the input must additionally be taken into account by  $X_{\rm L}(p) = 1/p$ .
  • This approach does not work for the computation of the impulse response  $h(t)$  due to  $Z = N =2$ .
  • Here,  the fact that the integral over the impulse response  $h(t)$  results in the step response  $\sigma(t)$  can be considered.




Please note:



Questions

1

What is the function of the two-port network considered here?  Is it

a low-pass filter,
a high-pass filter,
a band-pass filter,
a band-stop filter?

2

Compute  $L$  and  $C$  for the given pole–zero configuration.  Consider the normalization value  $1/T$  and the resistance  $R = 100 \ \rm \Omega$.

$L \hspace{0.24cm} = \ $

$\ \rm µ H$
$C \hspace{0.2cm} = \ $

$\ \rm nF$

3

Compute the output signal  $y(t) = \sigma(t)$ if a step function  $x(t) = \gamma(t)$ is applied to the input.  Enter the following signal values:

$y(t = 0) \ = \ $

$y(t = 0.5 \ \rm µ s) \ = \ $

$y(t = 2.0 \ \rm µ s) \ = \ $

$y(t = 5.0 \ \rmµ s) \ = \ $

4

Compute the impulse response  $h(t)$ in particular for times  $t = 0$  and  $t = 1 \ \rm µ s$.  Which of the following statements are true?

$h(t)$  includes a Dirac delta function at  $t = 0$.
The continuous part of  $h(t)$  is negative in the whole range.
The continuous part of  $h(t)$  has a maximum.


Solution

(1)  Suggested solution 4  is correct:

  • At extremely low frequencies  $(f \rightarrow 0)$,  the capacitance  $C$  has infinite resistance and at very high frequencies  $(f \rightarrow \infty)$  the inductance  $L$.
  • In both cases,  $Y(f) = X(f)$   ⇒   $H(f) = 1$  holds.
  • In contrast, the LC series connection acts as a short circuit at the resonance frequency  $f_0$  and  $H(f = f_0) = 0$  holds.
  • The followiong follows from the block diagram alone:   It is a band-stop filter.


(2)  The following  $p$–transfer function  $($without the normalization factor  $1/T)$  is obtained from the pole–zero diagram:

$$H_{\rm L}(p)= \frac {(p - {\rm j} \cdot 2)(p + {\rm j} \cdot 2)} {(p +1)(p +4 )}= \frac {p^2 +4} {p^2 + 5 \cdot p +4} \hspace{0.05cm} .$$
  • The capacitance for the circuit is obtained considering the voltage divider properties with the reactance  $p \cdot L$  of the inductance and the reactance  $1/(p \cdot C)$  of the capacitance:
$$H_{\rm L}(p)= \frac { p\cdot L +1/(pC) } {R + p \cdot L +1/(pC) }= \frac { p^2 +1/(pC) } {p^2 + p \cdot {R}/{L} +1/(pC) }\hspace{0.05cm} .$$
  • Taking into account the normalization factor  $1/T= 10^6 \cdot \rm 1/s$  and by comparison, the following is found:
$${R}/{L} \hspace{0.25cm} = \hspace{0.2cm} 5 \cdot 10^{6 }\, {\rm 1/s} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}L= \frac{100\, {\rm \Omega}}{5 \cdot 10^6 \, {\rm 1/s}}\hspace{0.15cm}\underline{= 20\,{\rm µ H} \hspace{0.05cm}} ,$$
$${1}/({LC}) \hspace{0.25cm} = \hspace{0.2cm}4 \cdot 10^{12 }\, {\rm 1/s^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}C= \frac{1}{4 \cdot 10^{12 }\, {\rm 1/s^2}\cdot 2 \cdot 10^{-5 }\, {\rm \Omega \cdot s} } \hspace{0.15cm}\underline{= 12.5\,{\rm nF}} \hspace{0.05cm} .$$


(3)  The step function at the input is accounted for by  $X_{\rm L}(p) = 1/p$ . This results in

$$Y_{\rm L}(p)= \frac {p^2 +4} {p \cdot (p +1)\cdot(p +4 )} \hspace{0.05cm}, $$

whereof the time function  $y(t)$  can be determined by applying the residue theorem:

$$y_1(t) \hspace{0.25cm} = \hspace{0.2cm} \frac {p^2 +4} { (p +1)\cdot(p +4 )} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}0}= 1 \hspace{0.05cm} ,$$
$$ y_2(t) \hspace{0.25cm} = \hspace{0.2cm} \frac {p^2 +4} { p\cdot(p +4 )} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= - {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-t} \hspace{0.05cm} ,$$
$$ y_3(t) \hspace{0.25cm} = \hspace{0.2cm} \frac {p^2 +4} { p\cdot(p +1 )} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-4}= {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-4t}$$
$$\Rightarrow \hspace{0.3cm}y(t)= y_1(t)+y_2(t)+y_3(t)= 1- {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-t/T}+\ {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-4t/T} \hspace{0.05cm} .$$
Step response of the RLC resonant circuit

Here,  it is taken into account that the constant  $10^6 \cdot \rm 1/s$,  which is not considered in this calculation,  is compensated for by time normalization to  $T = 1 \ \rm µ s$.

The signal values which are looked for are:

$$y(t = 0) \hspace{0.05cm}\underline{= 1.000}\hspace{0.05cm}, \hspace{0.15cm}y(t = 0.5\,{\rm µ s}) \hspace{0.05cm}\underline{= 0.215}\hspace{0.05cm}, $$
$$y(t = 2\,{\rm µ s}) \hspace{0.05cm}\underline{= 0.775}\hspace{0.05cm}, \hspace{0.15cm}y(t = 5\,{\rm µ s}) \hspace{0.05cm}\underline{= 0.989}\hspace{0.05cm}. $$

The graph shows the signal curve.  The searched-for numerical values are inscribed again.

The following can be seen from this representation:

  • Since extremely high frequencies are not affected by the system (band-stop filter),  the jump from  $0$  to  $1$  with infinite edge steepness can also be seen in the output signal  $y(t)$.
  • The limit of  $y(t)$  for  $t → \infty$  consequently also yields the value  $1$  because of  $H(f = 0) = 1$.
  • There is a drop in the signal curve due to the LC resonance frequency at  $f_0 = 1/\pi$  (in  $\rm MHz)$ .
  • The signal minimum of  $\approx 0.215$  is at approximately  $t = 0.5 \ \rm µ s$.


Impulse response of the RLC low-pass filter

(4)  Suggested solutions 1 and 3  are correct:

  • The impulse response  $h(t)$  is obtained from the step response  $\sigma(t)=y(t)$  by differentiation:
$$h(t)= \frac{{\rm d}\hspace{0.1cm}y(t)}{{\rm d}t}= \delta (t) + \frac {5}{3T}\cdot {\rm e}^{ \hspace{0.05cm}-t/T}- \frac {20}{3T}\cdot {\rm e}^{ \hspace{0.05cm}-4t/T} \hspace{0.05cm} .$$
  • The first suggested solution is thus correct since differentiation of a step function  $\gamma(t)$  yields the Dirac delta function  $\delta(t)$.
  • The following numerical values are obtained for the continuous part of  $h(t)$ :
$$T \cdot h(t = 0 )\hspace{0.25cm} = \hspace{0.2cm} {5}/{3}- {20}/{3}= -5 \hspace{0.05cm} ,$$
$$ T \cdot h(t = T )\hspace{0.25cm} = \hspace{0.2cm} {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-1}- {20}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-4}= {5}/{3}\cdot 0.368- {20}/{3}\cdot 0.018\approx 0.491 \hspace{0.05cm} .$$
  • Since  $h(t)$  tends to zero in the limiting case for  $t → \infty$,  the third proposed solution is also correct in contrast to the second one.
  • The curve of  $h(t)$  is shown in the adjacent diagram.