Difference between revisions of "Aufgaben:Exercise 3.5: Circuit with R, L and C"

From LNTwww
 
(5 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1776__LZI_A_3_5.png|right|frame|Two-port network with  $R$,  $L$ and  $C$]]
+
[[File:P_ID1776__LZI_A_3_5.png|right|frame|Two-port network with  $R$, $L$, $C$]]
We consider a two-port network with the resistance  $R = 100 \ \rm \Omega$  in the longitudinal branch, while in the transverse branch an inductance  $L$  and a capacitance  $C$  are connected in series. The pole–zero diagram is drawn below.
+
We consider a two-port network with the resistance  $R = 100 \ \rm \Omega$  in the longitudinal branch,  while in the transverse branch an inductance  $L$  and a capacitance  $C$  are connected in series.  The pole–zero diagram is drawn below.
  
 
Note the normalization of the complex frequency  $p = {\rm j} \cdot 2 \pi f$  to the value  $1/T$  with  $T = 1 \ \rm µ s$.  As a consequence, for example the pole at  $-1$  is at  $-10^6 \cdot \ \rm 1/s$  in reality.
 
Note the normalization of the complex frequency  $p = {\rm j} \cdot 2 \pi f$  to the value  $1/T$  with  $T = 1 \ \rm µ s$.  As a consequence, for example the pole at  $-1$  is at  $-10^6 \cdot \ \rm 1/s$  in reality.
  
 
The residue theorem can be applied to compute time functions:  
 
The residue theorem can be applied to compute time functions:  
*For  $N$  simple poles, the output  $y(t)$  is composed of  $N$  natural oscillations (''residuals'') .  
+
*For  $N$  simple poles, the output  $y(t)$  is composed of  $N$  natural oscillations ("residuals") .  
 
*For a simple pole at  $p_{{\rm x}i}$,  the following holds for the residual:
 
*For a simple pole at  $p_{{\rm x}i}$,  the following holds for the residual:
 
:$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}}
 
:$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}}
Line 18: Line 18:
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
:However, this approach only works if the number  $Z$  of zeros is less than  $N$. In this exercise, for example if the step response  $\sigma(t)$  is computed.  In this case,  $Z = 2$  and  $N = 3$ hold since the step function at the input must additionally be taken into account by  $X_{\rm L}(p) = 1/p$ .
+
:However, this approach only works if the number  $Z$  of zeros is less than  $N$.  In this exercise,  for example if the step response  $\sigma(t)$  is computed.  In this case,  $Z = 2$  and  $N = 3$ hold since the step function at the input must additionally be taken into account by  $X_{\rm L}(p) = 1/p$ .
  
 
*This approach does not work for the computation of the impulse response  $h(t)$  due to  $Z = N =2$ .  
 
*This approach does not work for the computation of the impulse response  $h(t)$  due to  $Z = N =2$ .  
*Here, the fact that the integral over the impulse response  $h(t)$  results in the step response  $\sigma(t)$  can be considered.
+
*Here,  the fact that the integral over the impulse response  $h(t)$  results in the step response  $\sigma(t)$  can be considered.
  
  
Line 28: Line 28:
  
  
 
+
Please note:  
 
 
 
 
''Please note:''
 
 
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
 
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
 
   
 
   
Line 65: Line 62:
 
{Compute the impulse response  $h(t)$ in particular for times  $t = 0$  and  $t = 1 \ \rm µ s$.  Which of the following statements are true?
 
{Compute the impulse response  $h(t)$ in particular for times  $t = 0$  and  $t = 1 \ \rm µ s$.  Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ $h(t)$  includes a Dirac function at  $t = 0$.
+
+ $h(t)$  includes a Dirac delta function at  $t = 0$.
 
- The continuous part of  $h(t)$  is negative in the whole range.
 
- The continuous part of  $h(t)$  is negative in the whole range.
 
+ The continuous part of  $h(t)$  has a maximum.
 
+ The continuous part of  $h(t)$  has a maximum.
Line 74: Line 71:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Suggested solution 4</u> is correct:
+
'''(1)'''&nbsp; <u>Suggested solution 4</u>&nbsp; is correct:
 
*At extremely low frequencies &nbsp;$(f \rightarrow 0)$,&nbsp; the capacitance&nbsp; $C$&nbsp; has infinite resistance and at very high frequencies &nbsp;$(f \rightarrow \infty)$&nbsp; the inductance&nbsp; $L$.  
 
*At extremely low frequencies &nbsp;$(f \rightarrow 0)$,&nbsp; the capacitance&nbsp; $C$&nbsp; has infinite resistance and at very high frequencies &nbsp;$(f \rightarrow \infty)$&nbsp; the inductance&nbsp; $L$.  
*In both cases, &nbsp;$Y(f) = X(f)$ &nbsp; &#8658; &nbsp; $H(f) = 1$ holds.  
+
*In both cases, &nbsp;$Y(f) = X(f)$ &nbsp; &#8658; &nbsp; $H(f) = 1$&nbsp; holds.  
*In contrast, the LC series connection acts as a short circuit at the resonance frequency &nbsp;$f_0$&nbsp; and &nbsp;$H(f = f_0) = 0$ holds.  
+
*In contrast, the LC series connection acts as a short circuit at the resonance frequency &nbsp;$f_0$&nbsp; and &nbsp;$H(f = f_0) = 0$&nbsp; holds.  
 
*The followiong follows from the block diagram alone: &nbsp; It is a <u>band-stop filter</u>.
 
*The followiong follows from the block diagram alone: &nbsp; It is a <u>band-stop filter</u>.
  
  
  
'''(2)'''&nbsp; The following &nbsp;$p$&ndash;transfer function&nbsp; $($without the normalization factor&nbsp; $1/T)$ is obtained from pole&ndash;zero diagram:
+
'''(2)'''&nbsp; The following &nbsp;$p$&ndash;transfer function&nbsp; $($without the normalization factor&nbsp; $1/T)$&nbsp; is obtained from the pole&ndash;zero diagram:
 
:$$H_{\rm L}(p)=  \frac {(p - {\rm  j} \cdot 2)(p + {\rm  j} \cdot
 
:$$H_{\rm L}(p)=  \frac {(p - {\rm  j} \cdot 2)(p + {\rm  j} \cdot
 
2)} {(p +1)(p +4 )}=  \frac {p^2 +4} {p^2 + 5 \cdot p +4}
 
2)} {(p +1)(p +4 )}=  \frac {p^2 +4} {p^2 + 5 \cdot p +4}
Line 90: Line 87:
 
  {R + p \cdot L +1/(pC) }=  \frac { p^2 +1/(pC) }
 
  {R + p \cdot L +1/(pC) }=  \frac { p^2 +1/(pC) }
 
  {p^2 + p \cdot {R}/{L} +1/(pC) }\hspace{0.05cm} .$$
 
  {p^2 + p \cdot {R}/{L} +1/(pC) }\hspace{0.05cm} .$$
*Taking into account the normalization factor &nbsp;$1/T= 10^6 \cdot \rm  1/s$ and by comparison, the following is found:
+
*Taking into account the normalization factor &nbsp;$1/T= 10^6 \cdot \rm  1/s$&nbsp; and by comparison, the following is found:
 
:$${R}/{L} \hspace{0.25cm} =  \hspace{0.2cm} 5 \cdot 10^{6 }\, {\rm 1/s}
 
:$${R}/{L} \hspace{0.25cm} =  \hspace{0.2cm} 5 \cdot 10^{6 }\, {\rm 1/s}
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}L= \frac{100\, {\rm \Omega}}{5 \cdot 10^6 \, {\rm
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}L= \frac{100\, {\rm \Omega}}{5 \cdot 10^6 \, {\rm
Line 104: Line 101:
 
'''(3)'''&nbsp; The step function at the input is accounted for by &nbsp;$X_{\rm L}(p) = 1/p$&nbsp;. This results in
 
'''(3)'''&nbsp; The step function at the input is accounted for by &nbsp;$X_{\rm L}(p) = 1/p$&nbsp;. This results in
 
:$$Y_{\rm L}(p)=  \frac {p^2 +4} {p \cdot (p +1)\cdot(p +4 )}
 
:$$Y_{\rm L}(p)=  \frac {p^2 +4} {p \cdot (p +1)\cdot(p +4 )}
  \hspace{0.05cm} ,$$
+
  \hspace{0.05cm}, $$
 
whereof the time function &nbsp;$y(t)$&nbsp; can be determined by applying the residue theorem:
 
whereof the time function &nbsp;$y(t)$&nbsp; can be determined by applying the residue theorem:
 
:$$y_1(t) \hspace{0.25cm} =  \hspace{0.2cm}
 
:$$y_1(t) \hspace{0.25cm} =  \hspace{0.2cm}
Line 129: Line 126:
  
 
[[File:P_ID1778__LZI_A_3_5_c.png|right|frame|Step response of the RLC resonant circuit]]
 
[[File:P_ID1778__LZI_A_3_5_c.png|right|frame|Step response of the RLC resonant circuit]]
Here, it is taken into account that the constant &nbsp;$10^6 \cdot \rm  1/s$&nbsp; which is not considered in this calculation is compensated for by the time normalization to &nbsp;$T = 1 \ \rm &micro; s$&nbsp;.  
+
Here,&nbsp; it is taken into account that the constant &nbsp;$10^6 \cdot \rm  1/s$,&nbsp; which is not considered in this calculation,&nbsp; is compensated for by time normalization to &nbsp;$T = 1 \ \rm &micro; s$.  
  
 
The signal values which are looked for are:
 
The signal values which are looked for are:
Line 141: Line 138:
  
 
The following can be seen from this representation:
 
The following can be seen from this representation:
* Since extremely high frequencies are not affected by the system (band-stop filter), the jump from &nbsp;$0$&nbsp; to &nbsp;$1$&nbsp; with infinite edge steepness can also be seen in the output signal &nbsp;$y(t)$&nbsp;.
+
* Since extremely high frequencies are not affected by the system (band-stop filter),&nbsp; the jump from &nbsp;$0$&nbsp; to &nbsp;$1$&nbsp; with infinite edge steepness can also be seen in the output signal &nbsp;$y(t)$.
* The limit of &nbsp;$y(t)$&nbsp; for &nbsp;$t &#8594; \infty$&nbsp; consequently also yields the value $1$ because of &nbsp;$H(f = 0) = 1$&nbsp;.
+
* The limit of &nbsp;$y(t)$&nbsp; for &nbsp;$t &#8594; \infty$&nbsp; consequently also yields the value&nbsp; $1$&nbsp; because of &nbsp;$H(f = 0) = 1$.
 
* There is a drop in the signal curve due to the LC resonance frequency at &nbsp;$f_0 = 1/\pi$&nbsp; (in&nbsp; $\rm MHz)$&nbsp;.  
 
* There is a drop in the signal curve due to the LC resonance frequency at &nbsp;$f_0 = 1/\pi$&nbsp; (in&nbsp; $\rm MHz)$&nbsp;.  
 
*The signal minimum of &nbsp;$\approx 0.215$&nbsp; is at approximately &nbsp;$t = 0.5 \ \rm &micro; s$.
 
*The signal minimum of &nbsp;$\approx 0.215$&nbsp; is at approximately &nbsp;$t = 0.5 \ \rm &micro; s$.
Line 148: Line 145:
  
 
[[File:P_ID1779__LZI_A_3_5_d.png|right|frame|Impulse response of the RLC low-pass filter]]
 
[[File:P_ID1779__LZI_A_3_5_d.png|right|frame|Impulse response of the RLC low-pass filter]]
'''(4)'''&nbsp; <u>Suggested solutions 1 and 3</u> are correct:
+
'''(4)'''&nbsp; <u>Suggested solutions 1 and 3</u>&nbsp; are correct:
 
*The impulse response &nbsp;$h(t)$&nbsp; is obtained from the step response &nbsp;$\sigma(t)=y(t)$&nbsp; by differentiation:
 
*The impulse response &nbsp;$h(t)$&nbsp; is obtained from the step response &nbsp;$\sigma(t)=y(t)$&nbsp; by differentiation:
 
:$$h(t)= \frac{{\rm d}\hspace{0.1cm}y(t)}{{\rm
 
:$$h(t)= \frac{{\rm d}\hspace{0.1cm}y(t)}{{\rm
Line 155: Line 152:
 
  \hspace{0.05cm}-4t/T}
 
  \hspace{0.05cm}-4t/T}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
*The first suggested solution is thus correct since differentiation of a step function yields the Dirac function.  
+
*The first suggested solution is thus correct since differentiation of a step function&nbsp; $\gamma(t)$&nbsp; yields the Dirac delta function&nbsp; $\delta(t)$.  
 
*The following numerical values are obtained for the continuous part of &nbsp;$h(t)$&nbsp;:
 
*The following numerical values are obtained for the continuous part of &nbsp;$h(t)$&nbsp;:
 
:$$T \cdot h(t = 0 )\hspace{0.25cm} =  \hspace{0.2cm} {5}/{3}- {20}/{3}= -5
 
:$$T \cdot h(t = 0 )\hspace{0.25cm} =  \hspace{0.2cm} {5}/{3}- {20}/{3}= -5

Latest revision as of 11:12, 10 November 2021

Two-port network with  $R$, $L$, $C$

We consider a two-port network with the resistance  $R = 100 \ \rm \Omega$  in the longitudinal branch,  while in the transverse branch an inductance  $L$  and a capacitance  $C$  are connected in series.  The pole–zero diagram is drawn below.

Note the normalization of the complex frequency  $p = {\rm j} \cdot 2 \pi f$  to the value  $1/T$  with  $T = 1 \ \rm µ s$.  As a consequence, for example the pole at  $-1$  is at  $-10^6 \cdot \ \rm 1/s$  in reality.

The residue theorem can be applied to compute time functions:

  • For  $N$  simple poles, the output  $y(t)$  is composed of  $N$  natural oscillations ("residuals") .
  • For a simple pole at  $p_{{\rm x}i}$,  the following holds for the residual:
$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{0.05cm} .$$
However, this approach only works if the number  $Z$  of zeros is less than  $N$.  In this exercise,  for example if the step response  $\sigma(t)$  is computed.  In this case,  $Z = 2$  and  $N = 3$ hold since the step function at the input must additionally be taken into account by  $X_{\rm L}(p) = 1/p$ .
  • This approach does not work for the computation of the impulse response  $h(t)$  due to  $Z = N =2$ .
  • Here,  the fact that the integral over the impulse response  $h(t)$  results in the step response  $\sigma(t)$  can be considered.




Please note:



Questions

1

What is the function of the two-port network considered here?  Is it

a low-pass filter,
a high-pass filter,
a band-pass filter,
a band-stop filter?

2

Compute  $L$  and  $C$  for the given pole–zero configuration.  Consider the normalization value  $1/T$  and the resistance  $R = 100 \ \rm \Omega$.

$L \hspace{0.24cm} = \ $

$\ \rm µ H$
$C \hspace{0.2cm} = \ $

$\ \rm nF$

3

Compute the output signal  $y(t) = \sigma(t)$ if a step function  $x(t) = \gamma(t)$ is applied to the input.  Enter the following signal values:

$y(t = 0) \ = \ $

$y(t = 0.5 \ \rm µ s) \ = \ $

$y(t = 2.0 \ \rm µ s) \ = \ $

$y(t = 5.0 \ \rmµ s) \ = \ $

4

Compute the impulse response  $h(t)$ in particular for times  $t = 0$  and  $t = 1 \ \rm µ s$.  Which of the following statements are true?

$h(t)$  includes a Dirac delta function at  $t = 0$.
The continuous part of  $h(t)$  is negative in the whole range.
The continuous part of  $h(t)$  has a maximum.


Solution

(1)  Suggested solution 4  is correct:

  • At extremely low frequencies  $(f \rightarrow 0)$,  the capacitance  $C$  has infinite resistance and at very high frequencies  $(f \rightarrow \infty)$  the inductance  $L$.
  • In both cases,  $Y(f) = X(f)$   ⇒   $H(f) = 1$  holds.
  • In contrast, the LC series connection acts as a short circuit at the resonance frequency  $f_0$  and  $H(f = f_0) = 0$  holds.
  • The followiong follows from the block diagram alone:   It is a band-stop filter.


(2)  The following  $p$–transfer function  $($without the normalization factor  $1/T)$  is obtained from the pole–zero diagram:

$$H_{\rm L}(p)= \frac {(p - {\rm j} \cdot 2)(p + {\rm j} \cdot 2)} {(p +1)(p +4 )}= \frac {p^2 +4} {p^2 + 5 \cdot p +4} \hspace{0.05cm} .$$
  • The capacitance for the circuit is obtained considering the voltage divider properties with the reactance  $p \cdot L$  of the inductance and the reactance  $1/(p \cdot C)$  of the capacitance:
$$H_{\rm L}(p)= \frac { p\cdot L +1/(pC) } {R + p \cdot L +1/(pC) }= \frac { p^2 +1/(pC) } {p^2 + p \cdot {R}/{L} +1/(pC) }\hspace{0.05cm} .$$
  • Taking into account the normalization factor  $1/T= 10^6 \cdot \rm 1/s$  and by comparison, the following is found:
$${R}/{L} \hspace{0.25cm} = \hspace{0.2cm} 5 \cdot 10^{6 }\, {\rm 1/s} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}L= \frac{100\, {\rm \Omega}}{5 \cdot 10^6 \, {\rm 1/s}}\hspace{0.15cm}\underline{= 20\,{\rm µ H} \hspace{0.05cm}} ,$$
$${1}/({LC}) \hspace{0.25cm} = \hspace{0.2cm}4 \cdot 10^{12 }\, {\rm 1/s^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}C= \frac{1}{4 \cdot 10^{12 }\, {\rm 1/s^2}\cdot 2 \cdot 10^{-5 }\, {\rm \Omega \cdot s} } \hspace{0.15cm}\underline{= 12.5\,{\rm nF}} \hspace{0.05cm} .$$


(3)  The step function at the input is accounted for by  $X_{\rm L}(p) = 1/p$ . This results in

$$Y_{\rm L}(p)= \frac {p^2 +4} {p \cdot (p +1)\cdot(p +4 )} \hspace{0.05cm}, $$

whereof the time function  $y(t)$  can be determined by applying the residue theorem:

$$y_1(t) \hspace{0.25cm} = \hspace{0.2cm} \frac {p^2 +4} { (p +1)\cdot(p +4 )} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}0}= 1 \hspace{0.05cm} ,$$
$$ y_2(t) \hspace{0.25cm} = \hspace{0.2cm} \frac {p^2 +4} { p\cdot(p +4 )} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= - {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-t} \hspace{0.05cm} ,$$
$$ y_3(t) \hspace{0.25cm} = \hspace{0.2cm} \frac {p^2 +4} { p\cdot(p +1 )} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-4}= {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-4t}$$
$$\Rightarrow \hspace{0.3cm}y(t)= y_1(t)+y_2(t)+y_3(t)= 1- {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-t/T}+\ {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-4t/T} \hspace{0.05cm} .$$
Step response of the RLC resonant circuit

Here,  it is taken into account that the constant  $10^6 \cdot \rm 1/s$,  which is not considered in this calculation,  is compensated for by time normalization to  $T = 1 \ \rm µ s$.

The signal values which are looked for are:

$$y(t = 0) \hspace{0.05cm}\underline{= 1.000}\hspace{0.05cm}, \hspace{0.15cm}y(t = 0.5\,{\rm µ s}) \hspace{0.05cm}\underline{= 0.215}\hspace{0.05cm}, $$
$$y(t = 2\,{\rm µ s}) \hspace{0.05cm}\underline{= 0.775}\hspace{0.05cm}, \hspace{0.15cm}y(t = 5\,{\rm µ s}) \hspace{0.05cm}\underline{= 0.989}\hspace{0.05cm}. $$

The graph shows the signal curve.  The searched-for numerical values are inscribed again.

The following can be seen from this representation:

  • Since extremely high frequencies are not affected by the system (band-stop filter),  the jump from  $0$  to  $1$  with infinite edge steepness can also be seen in the output signal  $y(t)$.
  • The limit of  $y(t)$  for  $t → \infty$  consequently also yields the value  $1$  because of  $H(f = 0) = 1$.
  • There is a drop in the signal curve due to the LC resonance frequency at  $f_0 = 1/\pi$  (in  $\rm MHz)$ .
  • The signal minimum of  $\approx 0.215$  is at approximately  $t = 0.5 \ \rm µ s$.


Impulse response of the RLC low-pass filter

(4)  Suggested solutions 1 and 3  are correct:

  • The impulse response  $h(t)$  is obtained from the step response  $\sigma(t)=y(t)$  by differentiation:
$$h(t)= \frac{{\rm d}\hspace{0.1cm}y(t)}{{\rm d}t}= \delta (t) + \frac {5}{3T}\cdot {\rm e}^{ \hspace{0.05cm}-t/T}- \frac {20}{3T}\cdot {\rm e}^{ \hspace{0.05cm}-4t/T} \hspace{0.05cm} .$$
  • The first suggested solution is thus correct since differentiation of a step function  $\gamma(t)$  yields the Dirac delta function  $\delta(t)$.
  • The following numerical values are obtained for the continuous part of  $h(t)$ :
$$T \cdot h(t = 0 )\hspace{0.25cm} = \hspace{0.2cm} {5}/{3}- {20}/{3}= -5 \hspace{0.05cm} ,$$
$$ T \cdot h(t = T )\hspace{0.25cm} = \hspace{0.2cm} {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-1}- {20}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-4}= {5}/{3}\cdot 0.368- {20}/{3}\cdot 0.018\approx 0.491 \hspace{0.05cm} .$$
  • Since  $h(t)$  tends to zero in the limiting case for  $t → \infty$,  the third proposed solution is also correct in contrast to the second one.
  • The curve of  $h(t)$  is shown in the adjacent diagram.