Difference between revisions of "Aufgaben:Exercise 3.5: Differentiation of a Triangular Pulse"

From LNTwww
 
(5 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID514__Sig_A_3_5.png|250px|right|frame|Dreiecksignal und <br>differenziertes Dreiecksignal]]
+
[[File:P_ID514__Sig_A_3_5.png|250px|right|frame|Triangular signal and <br>differentiated triangular signal]]
  
Gesucht wird das Spektrum&nbsp; $Y(f)$&nbsp; des Signals
+
We are looking for the spectrum&nbsp; $Y(f)$&nbsp; of the signal
 
   
 
   
:$$y\left( t \right) = \left\{ \begin{array}{c} A \\  - A \\  0 \\  \end{array} \right.\quad \begin{array}{*{20}c}  {{\rm{f \ddot{u}r}}}  \\  {{\rm{f\ddot{u} r}}}  \\   {{\rm{f\ddot{u}r}}}  \\ \end{array}\;\begin{array}{*{20}c}  { - T \le t < 0,}  \\  {0 < t \le T,}  \\  {{\rm{sonst}}{\rm{.}}}  \\\end{array}$$
+
:$$y\left( t \right) = \left\{ \begin{array}{c} A \\  - A \\  0 \\  \end{array} \right.\quad \begin{array}{*{20}c}  {{\rm{f or}}}  \\  {{\rm{for}}}  \\     \\ \end{array}\;\begin{array}{*{20}c}  { - T \le t < 0,}  \\  {0 < t \le T,}  \\  {{\rm{else}}{\rm{.}}}  \\\end{array}$$
  
Dabei gelte&nbsp; $A = 1\,{\rm V}$&nbsp;  und&nbsp; $T = 0.5\,{\rm ms}$.
+
Let&nbsp; $A = 1\,{\rm V}$&nbsp;  and&nbsp; $T = 0.5\,{\rm ms}$ apply.
 
   
 
   
Als bekannt vorausgesetzt wird die Fouriertransformierte des oben skizzierten Dreieckimpulses&nbsp; $x(t)$, nämlich
+
The Fourier transform of the triangular pulse&nbsp; $x(t)$ sketched above is assumed to be known, namely
 
   
 
   
 
:$$X( f ) = A \cdot T \cdot {\mathop{\rm si}\nolimits} ^2 ( {{\rm{\pi }}fT} ),$$
 
:$$X( f ) = A \cdot T \cdot {\mathop{\rm si}\nolimits} ^2 ( {{\rm{\pi }}fT} ),$$
  
wobei&nbsp; $\text{si}(x) = \text{sin}(x)/x$&nbsp; gilt.
+
where&nbsp; $\text{si}(x) = \text{sin}(x)/x$.
  
Ein Vergleich der beiden Zeitsignale zeigt, dass zwischen den Funktionen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; folgender Zusammenhang besteht:
+
A comparison of the two signals shows that the following relationship exists between the functions&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp;:
 
   
 
   
 
:$$y(t) = T \cdot \frac{{{\rm d}x(t)}}{{{\rm d}t}}.$$
 
:$$y(t) = T \cdot \frac{{{\rm d}x(t)}}{{{\rm d}t}}.$$
Line 28: Line 28:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Signal_Representation/Fourier_Transform_Laws|Gesetzmäßigkeiten der Fouriertransformation]].
+
*This task belongs to the chapter&nbsp; [[Signal_Representation/Fourier_Transform_Theorems|Fourier Transform Theorems]].  
*Alle dort dargelegten Gesetzmäßigkeiten – unter Anderem auch der&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatz]]&nbsp; und der&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Integrationssatz|Integrationssatz]]&nbsp; – werden im Lernvideo&nbsp; [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]]&nbsp; an Beispielen verdeutlicht.
+
*All the laws presented here - including the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Shifting_Theorem|Shifting Theorem]]&nbsp; and the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Differentiation_Theorem|Differentiation Theorem]]&nbsp; – are illustrated with examples in the (German language) learning video<br> &nbsp; &nbsp; &nbsp;[[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]] &nbsp; &rArr; &nbsp;  "Regularities to the Fourier transform".
*In der Teilaufgabe&nbsp; '''(3)'''&nbsp; soll das Spektrum&nbsp; $Y(f)$&nbsp; ausgehend von einem symmetrischen Rechteckimpuls&nbsp; $r(t)$&nbsp; mit Amplitude&nbsp; $A$&nbsp; und Dauer&nbsp; $T$&nbsp; sowie dessen Spektrum&nbsp; $R(f) = A \cdot T \cdot \text{si}(\pi fT)$&nbsp; berechnet werden. Dies erreicht man durch zweimalige Anwendung des&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]].
+
*In subtask&nbsp; '''(3)'''&nbsp; the spectrum&nbsp; $Y(f)$&nbsp; is to be calculated starting from a symmetrical rectangular pulse&nbsp; $r(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; and duration&nbsp; $T$&nbsp; and its spectrum&nbsp; $R(f) = A \cdot T \cdot \text{si}(\pi fT)$&nbsp;.&nbsp; This is achieved by applying the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Shifting_Theorem|Shifting Theorem]].
*In&nbsp; [[Aufgaben:3.5Z_Integration_von_Diracfunktionen|Aufgabe 3.5Z]]&nbsp; wird das Spektrum&nbsp; $Y(f)$&nbsp; ausgehend von einem aus drei Diracfunktionen bestehenden Signal durch Anwendung des Integrationssatzes berechnet.
+
*In&nbsp; [[Aufgaben:3.5Z_Integration_von_Diracfunktionen|Exercise 3.5Z]]&nbsp; the spectrum&nbsp; $Y(f)$&nbsp; is calculated starting from a signal consisting of three Dirac functions by applying the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Integration_Theorem|Integration Theorem]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Spektralfunktion&nbsp; $Y(f)$&nbsp; am Ausgang. Wie groß ist deren Betrag bei den Frequenzen&nbsp; $f = 0$&nbsp; bzw.&nbsp; $f = 1 \ \rm kHz$?
+
{Calculate the spectral function&nbsp; $Y(f)$&nbsp; at the output. What is its magnitude at the frequencies&nbsp; $f = 0$&nbsp; and&nbsp; $f = 1 \ \rm kHz$?
 
|type="{}"}
 
|type="{}"}
 
$|Y(f=0)| \hspace{0.2cm} = \ $ { 0. } &nbsp;$\text{mV/Hz}$
 
$|Y(f=0)| \hspace{0.2cm} = \ $ { 0. } &nbsp;$\text{mV/Hz}$
 
$|Y(f=1 \ \text{kHz})| \ = \ $ { 0.636 3% } &nbsp;$\text{mV/Hz}$
 
$|Y(f=1 \ \text{kHz})| \ = \ $ { 0.636 3% } &nbsp;$\text{mV/Hz}$
  
{Welche Aussagen sind hinsichtlich des Spektrums&nbsp; $Y(f)$&nbsp; zutreffend?
+
{Which statements are true regarding the spectrum&nbsp; $Y(f)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Die Nullstellen von&nbsp; $X(f)$&nbsp; bleiben auch in&nbsp; $Y(f)$&nbsp; erhalten.
+
+ The zeros of&nbsp; $X(f)$&nbsp; also remain in&nbsp; $Y(f)$&nbsp;.
- Für&nbsp; $f \rightarrow \infty$&nbsp; hat&nbsp; $Y(f)$&nbsp; den gleichen Verlauf wie&nbsp; $X(f)$.
+
- For large&nbsp; $f$&ndash;values,&nbsp; $Y(f)$&nbsp; satisfies the same bound as&nbsp; $X(f)$.
+ Für&nbsp; $f \rightarrow \infty$&nbsp; ist&nbsp; $Y(f)$&nbsp; doppelt so groß als das Spektrum eines Rechteckimpulses der Dauer&nbsp; $T$.
+
+ For large&nbsp; $f$&ndash;values,&nbsp; $|X(f)|$&nbsp; is smaller than the magnitude spectrum of a rectangular pulse of duration&nbsp; $T$.
  
{Berechnen Sie&nbsp; $Y(f)$&nbsp; ausgehend vom Rechteckimpuls durch Anwendung des Verschiebungssatzes. Welche Aussage ist hier zutreffend?
+
{Calculate&nbsp; $Y(f)$&nbsp; starting from the rectangular pulse by applying the displacement theorem. Which statement is true here?
 
|type="()"}
 
|type="()"}
+ Der Differentiationssatz führt schneller zum Ergebnis.
+
+ The differentiation theorem leads to the result more quickly.
- Der Verschiebungssatz führt schneller zum Ergebnis.
+
- The shifting theorem leads to the result more quickly.
  
 
</quiz>
 
</quiz>
  
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der Differentiationssatz lautet allgemein:
+
'''(1)'''&nbsp; The differentiation theorem reads generally:
 
   
 
   
 
:$$\frac{{{\rm d}x( t )}}{{{\rm d}t}}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{\rm{j}} 2{\rm{\pi }}f \cdot X( f ).$$
 
:$$\frac{{{\rm d}x( t )}}{{{\rm d}t}}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{\rm{j}} 2{\rm{\pi }}f \cdot X( f ).$$
  
*Angewandt auf das vorliegende Beispiel erhält man:
+
*Applied to the present example, one obtains:
 
   
 
   
 
:$$Y( f ) = T \cdot {\rm{j}}\cdot 2{\rm{\pi }}f \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{( {{\rm{\pi }}fT} )^2 }} = {\rm{j}} \cdot 2 \cdot A\cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$
 
:$$Y( f ) = T \cdot {\rm{j}}\cdot 2{\rm{\pi }}f \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{( {{\rm{\pi }}fT} )^2 }} = {\rm{j}} \cdot 2 \cdot A\cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$
  
*Diese Funktion ist rein imaginär. Bei der Frequenz&nbsp; $f = 0$&nbsp; verschwindet auch der Imaginärteil. Dies kann man zum Beispiel durch Anwendung der Regel von l'Hospital formal nachweisen &nbsp; &rArr; &nbsp; $Y( f = 0 ) \;\underline{= 0}$.
+
*This function is purely imaginary. At the frequency&nbsp; $f = 0$&nbsp; the imaginary part also disappears. This can be formally proven, for example, by applying l'Hospital's rule&nbsp; &rArr; &nbsp; $Y( f = 0 ) \;\underline{= 0}$.
*Das Ergebnis folgt aber auch aus der Tatsache, dass der Spektralwert bei&nbsp; $f = 0$&nbsp; gleich dem Integral über die Zeitfunktion&nbsp; $y(t)$&nbsp; ist.
+
*However, the result also follows from the fact that the spectral value at&nbsp; $f = 0$&nbsp; is equal to the integral over the time function&nbsp; $y(t)$&nbsp;.
*Bei der normierten Frequenz&nbsp; $f \cdot T = 0.5$&nbsp; $($also für&nbsp; $f = 1\,\text{ kHz})$&nbsp; ist die Sinusfunktion gleich&nbsp; $1$&nbsp; und man erhält&nbsp; $|Y(f = 1 \,\text{kHz})| = 4/\pi  \cdot A \cdot T$, also näherungsweise&nbsp; $|Y(f=1 \ \text{kHz})| \ \underline{=0.636 \,\text{ mV/Hz}}$&nbsp;  (positiv imaginär).
+
*At the normalised frequency&nbsp; $f \cdot T = 0.5$&nbsp; $($i.e for&nbsp; $f = 1\,\text{ kHz})$&nbsp; the sine function is equal to&nbsp; $1$&nbsp; and we obtain&nbsp; $|Y(f = 1 \,\text{kHz})| = 4/\pi  \cdot A \cdot T$, i.e. approximately&nbsp; $|Y(f=1 \ \text{kHz})| \ \underline{=0.636 \,\text{ mV/Hz}}$&nbsp;  (positive imaginary).
  
  
  
'''(2)'''&nbsp; Richtig sind  die <u>Lösungsvorschläge 1 und 3</u>:
+
'''(2)'''&nbsp; The correct solutions are <u>1 and 3</u>:
*Die Nullstellen von&nbsp; $X(f)$&nbsp; bleiben erhalten und es gibt eine weitere Nullstelle bei der Frequenz&nbsp; $f = 0$.  
+
*The zeros of&nbsp; $X(f)$&nbsp; remain and there is another zero at the frequency&nbsp; $f = 0$.  
*Als asymptotischen Verlauf bezeichnet man die obere Schranke
+
*The upper bound is called the asymptotic curve
  
 
:$$\left| {Y_{\max }( f )} \right| = \frac{2A}{{{\rm{\pi }} \cdot |f|}} \ge \left| {Y( f )} \right|.$$
 
:$$\left| {Y_{\max }( f )} \right| = \frac{2A}{{{\rm{\pi }} \cdot |f|}} \ge \left| {Y( f )} \right|.$$
 
   
 
   
*Für die Frequenzen, bei denen die Sinusfunktion die Werte&nbsp; $\pm 1$&nbsp; liefert, sind&nbsp; $|Y_{\text{max}}(f)|$&nbsp; und&nbsp; $|Y(f)|$&nbsp; identisch.  
+
*For the frequencies at which the sine function delivers the values&nbsp; $\pm 1$&nbsp; ,&nbsp; $|Y_{\text{max}}(f)|$&nbsp; and&nbsp; $|Y(f)|$&nbsp; are identical.  
*Beim Rechteckimpuls der Amplitude&nbsp; $A$&nbsp; lautet die entsprechende Schranke&nbsp; $A/(\pi \cdot |f|)$.
+
*For the rectangular pulse of same amplitude&nbsp; $A$&nbsp; the corresponding bound is&nbsp; $A/(\pi \cdot |f|)$.
*Dagegen fällt das Spektrum&nbsp; $X(f)$&nbsp; des Dreieckimpulses asymptotisch schneller ab:
+
*In contrast, the spectrum&nbsp; $X(f)$&nbsp; of the triangular pulse falls asymptotically faster:
 
   
 
   
 
:$$\left| {X_{\max }( f )} \right| = \frac{A}{{{\rm{\pi }}^{\rm{2}} f^2 T}} \ge \left| {X( f )} \right|.$$
 
:$$\left| {X_{\max }( f )} \right| = \frac{A}{{{\rm{\pi }}^{\rm{2}} f^2 T}} \ge \left| {X( f )} \right|.$$
  
*Dies ist darauf zurückzuführen, dass&nbsp; $x(t)$&nbsp; keine Unstetigkeitsstellen aufweist.  
+
*This is due to the fact that&nbsp; $x(t)$&nbsp; has no discontinuity points.
  
  
  
'''(3)'''&nbsp; Ausgehend von einem symmetrischen Rechteckimpuls&nbsp; $r(t)$&nbsp; mit Amplitude&nbsp; $A$&nbsp; und Dauer&nbsp; $T$&nbsp; kann das Signal&nbsp; $y(t)$&nbsp; auch wie folgt dargestellt werden:  
+
'''(3)'''&nbsp; Starting from a symmetrical rectangular pulse&nbsp; $r(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; and duration&nbsp; $T$&nbsp; the signal&nbsp; $y(t)$&nbsp; can also be represented as follows:  
 
:$$y(t) = r( {t + T/2} ) - r( {t - T/2} ).$$  
 
:$$y(t) = r( {t + T/2} ) - r( {t - T/2} ).$$  
  
*Durch zweimalige Anwendung des Verschiebungssatzes erhält man:
+
*By applying the shifting theorem twice, one obtains:
 
   
 
   
 
:$$Y( f ) = R( f ) \cdot {\rm{e}}^{{\rm{j\pi }}fT}  - R( f ) \cdot {\rm{e}}^{ - {\rm{j\pi }}fT} .$$
 
:$$Y( f ) = R( f ) \cdot {\rm{e}}^{{\rm{j\pi }}fT}  - R( f ) \cdot {\rm{e}}^{ - {\rm{j\pi }}fT} .$$
  
*Mit der Beziehung&nbsp; $\text{e}^{\text{j}x} – \text{e}^{–\text{j}x} = 2\text{j} \cdot \text{sin}(x)$&nbsp; kann hierfür auch geschrieben werden:
+
*Using the relation&nbsp; $\text{e}^{\text{j}x} – \text{e}^{–\text{j}x} = 2\text{j} \cdot \text{sin}(x)$&nbsp; it is also possible to write for this:
 
   
 
   
 
:$$Y( f ) = 2{\rm{j}} \cdot A \cdot T \cdot {\mathop{\rm si}\nolimits}( {{\rm{\pi }}fT} ) \cdot \sin ( {{\rm{\pi }}fT} ).$$
 
:$$Y( f ) = 2{\rm{j}} \cdot A \cdot T \cdot {\mathop{\rm si}\nolimits}( {{\rm{\pi }}fT} ) \cdot \sin ( {{\rm{\pi }}fT} ).$$
  
*Es ergibt sich folgerichtig das gleiche Ergebnis wie in der Teilaufgabe&nbsp; '''(1)'''.  
+
*Consequently, the result is the same as in subtask&nbsp; '''(1)'''.  
  
*Welcher Weg schneller zum Ergebnis führt, muss jeder selbst für sich entscheiden. Der Autor meint, dass der erste Weg etwas günstiger ist.  
+
*Which way leads faster to the result, everyone must decide for himself. The author thinks that the first way is somewhat more favourable.
*<u>Subjektiv entscheiden wir uns für den Lösungsvorschlag 1</u>.
+
*<u>Subjectively, we decide in favour of solution suggestion 1</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^3.3 Fourier Transform Theorems^]]
+
[[Category:Signal Representation: Exercises|^3.3 Fourier Transform Theorems^]]

Latest revision as of 15:19, 24 May 2021

Triangular signal and
differentiated triangular signal

We are looking for the spectrum  $Y(f)$  of the signal

$$y\left( t \right) = \left\{ \begin{array}{c} A \\ - A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{20}c} {{\rm{f or}}} \\ {{\rm{for}}} \\ \\ \end{array}\;\begin{array}{*{20}c} { - T \le t < 0,} \\ {0 < t \le T,} \\ {{\rm{else}}{\rm{.}}} \\\end{array}$$

Let  $A = 1\,{\rm V}$  and  $T = 0.5\,{\rm ms}$ apply.

The Fourier transform of the triangular pulse  $x(t)$ sketched above is assumed to be known, namely

$$X( f ) = A \cdot T \cdot {\mathop{\rm si}\nolimits} ^2 ( {{\rm{\pi }}fT} ),$$

where  $\text{si}(x) = \text{sin}(x)/x$.

A comparison of the two signals shows that the following relationship exists between the functions  $x(t)$  and  $y(t)$ :

$$y(t) = T \cdot \frac{{{\rm d}x(t)}}{{{\rm d}t}}.$$





Hints:



Questions

1

Calculate the spectral function  $Y(f)$  at the output. What is its magnitude at the frequencies  $f = 0$  and  $f = 1 \ \rm kHz$?

$|Y(f=0)| \hspace{0.2cm} = \ $

 $\text{mV/Hz}$
$|Y(f=1 \ \text{kHz})| \ = \ $

 $\text{mV/Hz}$

2

Which statements are true regarding the spectrum  $Y(f)$ ?

The zeros of  $X(f)$  also remain in  $Y(f)$ .
For large  $f$–values,  $Y(f)$  satisfies the same bound as  $X(f)$.
For large  $f$–values,  $|X(f)|$  is smaller than the magnitude spectrum of a rectangular pulse of duration  $T$.

3

Calculate  $Y(f)$  starting from the rectangular pulse by applying the displacement theorem. Which statement is true here?

The differentiation theorem leads to the result more quickly.
The shifting theorem leads to the result more quickly.


Solution

(1)  The differentiation theorem reads generally:

$$\frac{{{\rm d}x( t )}}{{{\rm d}t}}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{\rm{j}} 2{\rm{\pi }}f \cdot X( f ).$$
  • Applied to the present example, one obtains:
$$Y( f ) = T \cdot {\rm{j}}\cdot 2{\rm{\pi }}f \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{( {{\rm{\pi }}fT} )^2 }} = {\rm{j}} \cdot 2 \cdot A\cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$
  • This function is purely imaginary. At the frequency  $f = 0$  the imaginary part also disappears. This can be formally proven, for example, by applying l'Hospital's rule  ⇒   $Y( f = 0 ) \;\underline{= 0}$.
  • However, the result also follows from the fact that the spectral value at  $f = 0$  is equal to the integral over the time function  $y(t)$ .
  • At the normalised frequency  $f \cdot T = 0.5$  $($i.e for  $f = 1\,\text{ kHz})$  the sine function is equal to  $1$  and we obtain  $|Y(f = 1 \,\text{kHz})| = 4/\pi \cdot A \cdot T$, i.e. approximately  $|Y(f=1 \ \text{kHz})| \ \underline{=0.636 \,\text{ mV/Hz}}$  (positive imaginary).


(2)  The correct solutions are 1 and 3:

  • The zeros of  $X(f)$  remain and there is another zero at the frequency  $f = 0$.
  • The upper bound is called the asymptotic curve
$$\left| {Y_{\max }( f )} \right| = \frac{2A}{{{\rm{\pi }} \cdot |f|}} \ge \left| {Y( f )} \right|.$$
  • For the frequencies at which the sine function delivers the values  $\pm 1$  ,  $|Y_{\text{max}}(f)|$  and  $|Y(f)|$  are identical.
  • For the rectangular pulse of same amplitude  $A$  the corresponding bound is  $A/(\pi \cdot |f|)$.
  • In contrast, the spectrum  $X(f)$  of the triangular pulse falls asymptotically faster:
$$\left| {X_{\max }( f )} \right| = \frac{A}{{{\rm{\pi }}^{\rm{2}} f^2 T}} \ge \left| {X( f )} \right|.$$
  • This is due to the fact that  $x(t)$  has no discontinuity points.


(3)  Starting from a symmetrical rectangular pulse  $r(t)$  with amplitude  $A$  and duration  $T$  the signal  $y(t)$  can also be represented as follows:

$$y(t) = r( {t + T/2} ) - r( {t - T/2} ).$$
  • By applying the shifting theorem twice, one obtains:
$$Y( f ) = R( f ) \cdot {\rm{e}}^{{\rm{j\pi }}fT} - R( f ) \cdot {\rm{e}}^{ - {\rm{j\pi }}fT} .$$
  • Using the relation  $\text{e}^{\text{j}x} – \text{e}^{–\text{j}x} = 2\text{j} \cdot \text{sin}(x)$  it is also possible to write for this:
$$Y( f ) = 2{\rm{j}} \cdot A \cdot T \cdot {\mathop{\rm si}\nolimits}( {{\rm{\pi }}fT} ) \cdot \sin ( {{\rm{\pi }}fT} ).$$
  • Consequently, the result is the same as in subtask  (1).
  • Which way leads faster to the result, everyone must decide for himself. The author thinks that the first way is somewhat more favourable.
  • Subjectively, we decide in favour of solution suggestion 1.