Difference between revisions of "Aufgaben:Exercise 3.6: Transient Behavior"

From LNTwww
 
(6 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1784__LZI_A_3_6.png|right|frame|Cosine and sine waves,<br>each causal]]
+
[[File:P_ID1784__LZI_A_3_6.png|right|frame|Cosine and sine waves,&nbsp; each causal]]
In this exercise, we consider a cosine signal &nbsp;$c(t)$&nbsp; with amplitude&nbsp; $1$&nbsp; and period $T = 1 \ \rm &micro; s$, which is defined for all times&nbsp; $t$&nbsp; $($in the range&nbsp; $ \pm \infty)$&nbsp;:
+
In this exercise,&nbsp; we consider a cosine signal &nbsp;$c(t)$&nbsp; with amplitude&nbsp; $1$&nbsp; and period&nbsp; $T = 1 \ \rm &micro; s$,&nbsp; which is defined for all times&nbsp; $t$&nbsp; $($in the range&nbsp; $ \pm \infty)$&nbsp;:
 
:$$c(t) = \cos(2\pi \cdot {t}/{T})
 
:$$c(t) = \cos(2\pi \cdot {t}/{T})
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
In contrast, the causal cosine signal &nbsp;$c_{\rm K}(t)$&nbsp; (red curve) starts only at the turn-on instant&nbsp; $t = 0$:
+
The causal&nbsp; $($German:&nbsp; "kausal" &nbsp; &rArr; &nbsp; subscript&nbsp; "K"$)$&nbsp; cosine signal &nbsp;$c_{\rm K}(t)$&nbsp; (red curve)&nbsp; starts only at the turn-on instant&nbsp; $t = 0$:
 
:$$c_{\rm K}(t)= \left\{ \begin{array}{c} c(t) \\
 
:$$c_{\rm K}(t)= \left\{ \begin{array}{c} c(t) \\
 
  0  \end{array} \right.
 
  0  \end{array} \right.
Line 15: Line 15:
 
{ t < 0\hspace{0.05cm}.}
 
{ t < 0\hspace{0.05cm}.}
 
\end{array}$$
 
\end{array}$$
Only the Fourier spectrum can be specified for the bilaterally unbounded signal &nbsp;$c(t)$&nbsp;:
+
Only the Fourier spectrum can be specified for the bilaterally unbounded signal &nbsp;$c(t)$:
 
:$$C(f) =  {1}/{ 2} \cdot \delta (f - f_0) + {1}/{ 2} \cdot \delta (f + f_0)
 
:$$C(f) =  {1}/{ 2} \cdot \delta (f - f_0) + {1}/{ 2} \cdot \delta (f + f_0)
 
  \quad {\rm with} \quad f_0 =  {1}/{ T}= 1\,\,{\rm MHz.}$$
 
  \quad {\rm with} \quad f_0 =  {1}/{ T}= 1\,\,{\rm MHz.}$$
On the contrary, for the causal cosine signal &nbsp;$c_{\rm K}(t)$&nbsp; the Laplace transform can also be specified:
+
On the contrary,&nbsp; for the causal cosine signal &nbsp;$c_{\rm K}(t)$&nbsp; the Laplace transform can also be specified:
 
:$$C_{\rm L}(p) =
 
:$$C_{\rm L}(p) =
 
  \frac {p} { (p-{\rm j} \cdot 2 \pi/T)\cdot (p+{\rm j} \cdot 2 \pi/T)}\hspace{0.05cm} .$$
 
  \frac {p} { (p-{\rm j} \cdot 2 \pi/T)\cdot (p+{\rm j} \cdot 2 \pi/T)}\hspace{0.05cm} .$$
Accordingly, the following holds for the Laplace transform of the causal sine function &nbsp;$s_{\rm K}(t)$:
+
Accordingly,&nbsp; the following holds for the Laplace transform of the causal sine function &nbsp;$s_{\rm K}(t)$:
 
:$$S_{\rm L}(p) =
 
:$$S_{\rm L}(p) =
 
  \frac {2 \pi/T} { (p-{\rm j} \cdot 2 \pi/T)\cdot (p+{\rm j} \cdot 2 \pi/T)}\hspace{0.05cm} .$$
 
  \frac {2 \pi/T} { (p-{\rm j} \cdot 2 \pi/T)\cdot (p+{\rm j} \cdot 2 \pi/T)}\hspace{0.05cm} .$$
Line 27: Line 27:
  
  
The signals &nbsp;$c(t)$,  &nbsp;$c_{\rm K}(t)$, &nbsp;$s(t)$&nbsp; and &nbsp;$s_{\rm K}(t)$&nbsp; are applied to the input of a low-pass filter of first-order with the following transfer function (or impulse response):
+
The signals &nbsp;$c(t)$,  &nbsp;$c_{\rm K}(t)$, &nbsp;$s(t)$&nbsp; and &nbsp;$s_{\rm K}(t)$&nbsp; are applied to the input of a low-pass filter of first-order with the following transfer function&nbsp; (or impulse response):
 
:$$H_{\rm L}(p) =
 
:$$H_{\rm L}(p) =
 
  \frac {2 /T} { p + 2 /T} \quad
 
  \frac {2 /T} { p + 2 /T} \quad
Line 43: Line 43:
  
  
''Please note:''
+
Please note:  
*The exercise belongs to the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
+
*The exercise belongs to the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].  
 
 
*The computations for subtask&nbsp; '''(6)'''&nbsp; are bulky.
 
*The computations for subtask&nbsp; '''(6)'''&nbsp; are bulky.
 
*For computing the signals &nbsp;$y_{\rm CK}(t)$&nbsp; and &nbsp;$y_{\rm SK}(t)$,&nbsp; for example the&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Formulation_of_the_residue_theorem|residue theorem]]&nbsp; can be used.  
 
*For computing the signals &nbsp;$y_{\rm CK}(t)$&nbsp; and &nbsp;$y_{\rm SK}(t)$,&nbsp; for example the&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Formulation_of_the_residue_theorem|residue theorem]]&nbsp; can be used.  
Line 53: Line 52:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Compute the frequency response &nbsp;$H(f)$&nbsp; by magnitude and phase using &nbsp;$H_{\rm L}(p)$&nbsp;. &nbsp; What values are obtained for frequency &nbsp;$ f = f_0 = 1/T  = 1 \ \rm MHz$?
+
{Compute the frequency response &nbsp;$H(f)$&nbsp; by magnitude and phase using &nbsp;$H_{\rm L}(p)$. &nbsp; What values are obtained for frequency &nbsp;$ f = f_0 = 1/T  = 1 \ \rm MHz$?
 
|type="{}"}
 
|type="{}"}
 
$|H(f = f_0)| \ = \ $  { 0.303 3% }
 
$|H(f = f_0)| \ = \ $  { 0.303 3% }
Line 66: Line 65:
  
  
{Compute the output signal &nbsp;$y_{\rm S}(t)$ if the sine signal &nbsp;$s(t)$&nbsp; is applied to the filter input.&nbsp; What value is obtained for&nbsp; $t = 0$?
+
{Compute the output signal &nbsp;$y_{\rm S}(t)$&nbsp; if the sine signal &nbsp;$s(t)$&nbsp; is applied to the filter input.&nbsp; What value is obtained for&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$y_{\rm S}(t = 0) \ = \ $  { -0.295--0.283 }
 
$y_{\rm S}(t = 0) \ = \ $  { -0.295--0.283 }
  
  
{Determine the length of influence &nbsp;$T_h$&nbsp; of the filter impulse response, that is the time at which &nbsp;$h(t)$&nbsp; has decayed to &nbsp;$1\%$&nbsp; of the maximum value. Normalization to&nbsp; $T$.
+
{Determine the influence  length &nbsp;$T_h$&nbsp; of the filter impulse response,&nbsp; that is the time at which &nbsp;$h(t)$&nbsp; has decayed to &nbsp;$1\%$&nbsp; of the maximum value.&nbsp; Normalization to&nbsp; $T$.
 
|type="{}"}
 
|type="{}"}
 
$T_h/T \ =  \ $  { 2.3 3% }
 
$T_h/T \ =  \ $  { 2.3 3% }
Line 93: Line 92:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Replacing the parameter&nbsp; $T$&nbsp; by&nbsp; $1/f_0$&nbsp; and&nbsp; $p$&nbsp; by&nbsp; ${\rm j} \cdot 2 \pi f$ in&nbsp; $H_{\rm L}(p)$&nbsp; the following is thus obtained for the frequency response in general or for&nbsp; $f_0 = 1 \ \rm MHz$:
+
'''(1)'''&nbsp; Replacing the parameter&nbsp; $T$&nbsp; by&nbsp; $1/f_0$&nbsp; and &nbsp; $p$ &nbsp; by&nbsp; ${\rm j} \cdot 2 \pi f$ in&nbsp; $H_{\rm L}(p)$&nbsp; the following is obtained for the frequency response in general or for&nbsp; $f_0 = 1 \ \rm MHz$:
 
:$$H(f) =  \frac {2 /T} { {\rm j} \cdot 2 \pi f + 2 /T}=
 
:$$H(f) =  \frac {2 /T} { {\rm j} \cdot 2 \pi f + 2 /T}=
 
  \frac {f_0} { {\rm j} \cdot \pi f + f_0}
 
  \frac {f_0} { {\rm j} \cdot \pi f + f_0}
Line 109: Line 108:
 
'''(2)'''&nbsp; The output signal&nbsp; $y_{\rm C}(t)$&nbsp; is attenuated by the factor&nbsp; $0.303$&nbsp; and delayed by&nbsp; $\tau \approx 72/360 \cdot T = T/5$&nbsp; compared to the input signal&nbsp; $c(t)$&nbsp;.  
 
'''(2)'''&nbsp; The output signal&nbsp; $y_{\rm C}(t)$&nbsp; is attenuated by the factor&nbsp; $0.303$&nbsp; and delayed by&nbsp; $\tau \approx 72/360 \cdot T = T/5$&nbsp; compared to the input signal&nbsp; $c(t)$&nbsp;.  
  
Thus, this signal can also be described as follows:
+
*Thus, this signal can also be described as follows:
 
:$$y_{\rm C}(t) =  \frac { \cos(2\pi  {t}/{T}) + \pi \cdot \sin(2\pi  {t}/{T})} { {1 + \pi^2
 
:$$y_{\rm C}(t) =  \frac { \cos(2\pi  {t}/{T}) + \pi \cdot \sin(2\pi  {t}/{T})} { {1 + \pi^2
 
  }}= 0.303 \cdot \cos(2\pi \cdot \frac{t-T/5}{T}) \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} y_{\rm C}(t=0) =  \frac {1} { {1 + \pi^2
 
  }}= 0.303 \cdot \cos(2\pi \cdot \frac{t-T/5}{T}) \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} y_{\rm C}(t=0) =  \frac {1} { {1 + \pi^2
 
  }} \hspace{0.15cm}\underline{\approx 0.092} \hspace{0.05cm}.$$
 
  }} \hspace{0.15cm}\underline{\approx 0.092} \hspace{0.05cm}.$$
This signal is shown dotted in blue in the left graph for solution&nbsp; '''(5)'''&nbsp;.
+
*This signal is shown dotted in blue in the left graph for solution&nbsp; '''(5)'''.
  
  
Line 119: Line 118:
 
'''(3)'''&nbsp; The signal&nbsp; $y_{\rm S}(t)$&nbsp; is also smaller by the attenuation factor&nbsp; $0.303$&nbsp; and delayed by the time period&nbsp; $\tau = T/5$&nbsp; compared to&nbsp; $s(t)$&nbsp;.  
 
'''(3)'''&nbsp; The signal&nbsp; $y_{\rm S}(t)$&nbsp; is also smaller by the attenuation factor&nbsp; $0.303$&nbsp; and delayed by the time period&nbsp; $\tau = T/5$&nbsp; compared to&nbsp; $s(t)$&nbsp;.  
  
It can be described as follows:
+
*It can be described as follows:
 
:$$y_{\rm S}(t) =  \frac { -\pi \cdot \cos(2\pi  {t}/{T}) +  \sin(2\pi  {t}/{T})} { {1 + \pi^2
 
:$$y_{\rm S}(t) =  \frac { -\pi \cdot \cos(2\pi  {t}/{T}) +  \sin(2\pi  {t}/{T})} { {1 + \pi^2
 
  }}= 0.303 \cdot \sin(2\pi \cdot \frac{t-T/5}{T}) \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} y_{\rm S}(t=0) =  -\frac {\pi} { {1 + \pi^2
 
  }}= 0.303 \cdot \sin(2\pi \cdot \frac{t-T/5}{T}) \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} y_{\rm S}(t=0) =  -\frac {\pi} { {1 + \pi^2
 
  }} \hspace{0.15cm}\underline{\approx -0.289} \hspace{0.05cm}.$$
 
  }} \hspace{0.15cm}\underline{\approx -0.289} \hspace{0.05cm}.$$
This signal is sketched dotted in blue in the right graph for solution&nbsp; '''(5)'''&nbsp;.
+
*This signal is sketched dotted in blue in the right graph for solution&nbsp; '''(5)'''&nbsp;.
  
  
  
'''(4)'''&nbsp; At&nbsp; $T_h$&nbsp; the impulse response&nbsp; $h(t)$&nbsp; should have decayed to&nbsp; $1\%$&nbsp; of the maximum value. Thus, the following holds:
+
'''(4)'''&nbsp; At&nbsp; $T_h$&nbsp; the impulse response&nbsp; $h(t)$&nbsp; should have decayed to&nbsp; $1\%$&nbsp; of the maximum value.&nbsp;  Thus,&nbsp; the following holds:
 
:$${\rm e}^{\hspace{0.05cm}-\hspace{0.03cm}2
 
:$${\rm e}^{\hspace{0.05cm}-\hspace{0.03cm}2
 
  \hspace{0.03cm}T_{ h}/T} = 0.01 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} {T_{ h}}/{T} =\frac{1}{2}
 
  \hspace{0.03cm}T_{ h}/T} = 0.01 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} {T_{ h}}/{T} =\frac{1}{2}
Line 135: Line 134:
 
  {0.02}/{T}\hspace{0.05cm}.$$
 
  {0.02}/{T}\hspace{0.05cm}.$$
  
 
+
[[File:P_ID1785__LZI_A_3_6_e.png|right|frame|Transient behavior of a causal cosine and a causal sine signal]]
 
+
<br>'''(5)'''&nbsp; The <u>statements 1 and 2</u> are correct:
'''(5)'''&nbsp; The <u>statements 1 and 2</u> are correct:
 
 
*The causal signals&nbsp; $y_{\rm CK}(t)$&nbsp; and&nbsp; $y_{\rm SK}(t)$&nbsp; must be identical to zero for&nbsp; $t < 0$&nbsp;.  
 
*The causal signals&nbsp; $y_{\rm CK}(t)$&nbsp; and&nbsp; $y_{\rm SK}(t)$&nbsp; must be identical to zero for&nbsp; $t < 0$&nbsp;.  
*However, since the impulse response&nbsp; $h(t)$&nbsp; of the considered filter (nearly) vanishes for&nbsp; $t > T_h$,&nbsp; it does not matter whether the unbounded cosine signal&nbsp;  $c(t)$&nbsp; or the causal signal&nbsp; $c_{\rm K}(t)$ is applied to the input after the transient effect is over.  
+
*However,&nbsp; since the impulse response&nbsp; $h(t)$&nbsp; of the considered filter (nearly) vanishes for&nbsp; $t > T_h$,&nbsp; it does not matter whether the unbounded cosine signal&nbsp;  $c(t)$&nbsp; or the causal signal&nbsp; $c_{\rm K}(t)$&nbsp; is applied to the input after the transient effect is over.  
 
*The same is true for the sinusoidal signals: &nbsp; For&nbsp; $t >T_{ h}$,&nbsp; &nbsp; $y_{\rm SK}(t)=y_{\rm S}(t)$ holds.
 
*The same is true for the sinusoidal signals: &nbsp; For&nbsp; $t >T_{ h}$,&nbsp; &nbsp; $y_{\rm SK}(t)=y_{\rm S}(t)$ holds.
  
  
[[File:P_ID1785__LZI_A_3_6_e.png|center|frame|Transient behavior of a causal cosine and a causal sine signal]]
 
 
The graph shows the output signals&nbsp; $y_{\rm C}(t)$&nbsp; and&nbsp; $y_{\rm CK}(t)$&nbsp; for cosine-shaped input on the left and the signals&nbsp; $y_{\rm S}(t)$&nbsp; and&nbsp; $y_{\rm SK}(t)$&nbsp; for sinusoidal input on the right. Note the transit time of&nbsp; $T/5$&nbsp; $($corresponding to the phase&nbsp; $72^\circ)$&nbsp; in both cases.
 
*For&nbsp; $y_{\rm CK}(t)$&nbsp; the first wave peaks are smaller than $1$ to achieve the correct phase position of&nbsp; $y_{\rm C}(t)$&nbsp;.
 
*In contrast, for&nbsp; $y_{\rm SK}(t)$&nbsp; the first wave peaks are greater than $1$ to achieve the correct phase position of&nbsp; $y_{\rm S}(t)$&nbsp;.
 
  
 +
The graph shows the output signals&nbsp; $y_{\rm C}(t)$&nbsp; and&nbsp; $y_{\rm CK}(t)$&nbsp; for cosine-shaped input on the left and the signals&nbsp; $y_{\rm S}(t)$&nbsp; and&nbsp; $y_{\rm SK}(t)$&nbsp; for sinusoidal input on the right.&nbsp; '''Note the transit time'''&nbsp; of&nbsp; $T/5$&nbsp; $($corresponding to the phase&nbsp; $72^\circ)$&nbsp; '''in both cases'''.
 +
*For&nbsp; $y_{\rm CK}(t)$&nbsp; the first wave peaks are smaller than&nbsp; $1$&nbsp; to achieve the correct phase position of&nbsp; $y_{\rm C}(t)$&nbsp;.
 +
*In contrast,&nbsp; for&nbsp; $y_{\rm SK}(t)$&nbsp; the first wave peaks are greater than&nbsp; $1$&nbsp; to achieve the correct phase position of&nbsp; $y_{\rm S}(t)$&nbsp;.
  
  
Line 156: Line 152:
 
  p_{\rm x3}= -{2}/{T}
 
  p_{\rm x3}= -{2}/{T}
 
  \hspace{0.05cm}$&nbsp;
 
  \hspace{0.05cm}$&nbsp;
the following can be written for the Laplace transform of the signals&nbsp; $y_{\rm CK}(t)$&nbsp;:
+
the following can be written for the Laplace transform of the signal&nbsp; $y_{\rm CK}(t)$&nbsp;:
 
:$$Y_{\rm L}(p) =
 
:$$Y_{\rm L}(p) =
 
  \frac {-p_{{\rm x}3}\cdot p} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})(p-p_{{\rm x}3})}
 
  \frac {-p_{{\rm x}3}\cdot p} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})(p-p_{{\rm x}3})}
Line 176: Line 172:
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
* Similarly, the following is obtained for the second part:
+
* Similarly,&nbsp; the following is obtained for the second part:
 
:$$y_2(t)= {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}
 
:$$y_2(t)= {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}
 
  \hspace{0.05cm}\{Y_{\rm L}(p)\cdot {\rm e}^{\hspace{0.03cm}p t}\}=
 
  \hspace{0.05cm}\{Y_{\rm L}(p)\cdot {\rm e}^{\hspace{0.03cm}p t}\}=
Line 189: Line 185:
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
* Combining both parts and considering the numerical values of&nbsp; $p_{\rm x1}$&nbsp; and&nbsp; $p_{\rm x3}$,
+
* Combining both parts and considering the numerical values of&nbsp; $p_{\rm x1}$&nbsp; and&nbsp; $p_{\rm x3}$:
 
:$$y_{1\hspace{0.03cm}+2}(t)= \frac {1/T} { 2/T + {\rm j} \cdot 2\pi /T}
 
:$$y_{1\hspace{0.03cm}+2}(t)= \frac {1/T} { 2/T + {\rm j} \cdot 2\pi /T}
 
  \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm} t/T}+\frac {1/T} { 2/T - {\rm j} \cdot 2\pi /T}
 
  \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm} t/T}+\frac {1/T} { 2/T - {\rm j} \cdot 2\pi /T}
Line 203: Line 199:
 
  \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi  
 
  \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi  
 
  \hspace{0.03cm}t/T}
 
  \hspace{0.03cm}t/T}
  \hspace{0.05cm} $$ is obtained.
+
  \hspace{0.05cm} $$  
  
 
* Using Euler's theorem this can also be expressed as follows:
 
* Using Euler's theorem this can also be expressed as follows:
 
:$$y_{1\hspace{-0.03cm}+2} (t) =  \frac { \cos(2\pi  {t}/{T}) + \pi \cdot \sin(2\pi  {t}/{T})} { {1 + \pi^2
 
:$$y_{1\hspace{-0.03cm}+2} (t) =  \frac { \cos(2\pi  {t}/{T}) + \pi \cdot \sin(2\pi  {t}/{T})} { {1 + \pi^2
 
  }}= y_{\rm C}(t)\hspace{0.05cm}.$$
 
  }}= y_{\rm C}(t)\hspace{0.05cm}.$$
It can be seen that&nbsp; $y_{1\hspace{0.03cm}+2}(t)$&nbsp; is equal to the signal&nbsp; $y_{\rm C}(t)$&nbsp; computed in subtask&nbsp; '''(2)'''&nbsp;.
+
:It can be seen that&nbsp; $y_{1\hspace{0.03cm}+2}(t)$&nbsp; is equal to the signal&nbsp; $y_{\rm C}(t)$&nbsp; computed in subtask&nbsp; '''(2)'''&nbsp;.
  
* Finally, the following is obtained for the last residual:
+
* Finally,&nbsp; the following is obtained for the last residual:
 
:$$y_3(t)=\frac {-p_{{\rm x}3}^2} { (p_{{\rm x}3}-p_{{\rm
 
:$$y_3(t)=\frac {-p_{{\rm x}3}^2} { (p_{{\rm x}3}-p_{{\rm
 
x}1}) (p_{{\rm x}3}-p_{{\rm x}2})} \cdot {\rm
 
x}1}) (p_{{\rm x}3}-p_{{\rm x}2})} \cdot {\rm
Line 224: Line 220:
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
* Thus, the output signal is as follows for a causal cosine signal applied to the input:
+
* Thus,&nbsp; the output signal is as follows for a causal cosine signal applied to the input:
 
:$$y_{\rm CK}(t) = y_1(t)+y_2(t)+y_3(t) = \frac { \cos(2\pi  {t}/{T}) + \pi \cdot \sin(2\pi  {t}/{T})-{\rm
 
:$$y_{\rm CK}(t) = y_1(t)+y_2(t)+y_3(t) = \frac { \cos(2\pi  {t}/{T}) + \pi \cdot \sin(2\pi  {t}/{T})-{\rm
 
e}^{\hspace{0.05cm}-2
 
e}^{\hspace{0.05cm}-2
Line 232: Line 228:
 
e}^{\hspace{0.05cm}-0.4}} { {1 + \pi^2
 
e}^{\hspace{0.05cm}-0.4}} { {1 + \pi^2
 
  }} \hspace{0.15cm}\underline{ \approx 0.24} < 0.303\hspace{0.05cm} .$$
 
  }} \hspace{0.15cm}\underline{ \approx 0.24} < 0.303\hspace{0.05cm} .$$
:For comparison: &nbsp; The signal&nbsp; $y_{\rm C}(t)$&nbsp; has the value&nbsp; $0.303$ at this time.
+
:For comparison: &nbsp; The signal&nbsp; $y_{\rm C}(t)$&nbsp; has the value&nbsp; $0.303$ &nbsp; at this time.
  
* In contrast to this, the following arises as a result in general and specifically at the time of the first maximum at&nbsp; $t = 0.45 \cdot T$ for the causal sinusoidal signal applied to the input:
+
* In contrast to this,&nbsp; the following arises as a result in general and specifically at the time of the first maximum at&nbsp; $t = 0.45 \cdot T$&nbsp; for the causal sinusoidal signal applied to the input:
 
:$$y_{\rm SK}(t) =  \frac { -\pi \cdot \cos(2\pi  {t}/{T}) + \sin(2\pi  {t}/{T})+\pi \cdot {\rm
 
:$$y_{\rm SK}(t) =  \frac { -\pi \cdot \cos(2\pi  {t}/{T}) + \sin(2\pi  {t}/{T})+\pi \cdot {\rm
 
e}^{\hspace{0.05cm}-2
 
e}^{\hspace{0.05cm}-2

Latest revision as of 18:22, 9 December 2021

Cosine and sine waves,  each causal

In this exercise,  we consider a cosine signal  $c(t)$  with amplitude  $1$  and period  $T = 1 \ \rm µ s$,  which is defined for all times  $t$  $($in the range  $ \pm \infty)$ :

$$c(t) = \cos(2\pi \cdot {t}/{T}) \hspace{0.05cm} .$$

The causal  $($German:  "kausal"   ⇒   subscript  "K"$)$  cosine signal  $c_{\rm K}(t)$  (red curve)  starts only at the turn-on instant  $t = 0$:

$$c_{\rm K}(t)= \left\{ \begin{array}{c} c(t) \\ 0 \end{array} \right. \begin{array}{c} {\rm{for}} \\ {\rm{for}} \end{array}\begin{array}{*{20}c} { t \ge 0\hspace{0.05cm},} \\ { t < 0\hspace{0.05cm}.} \end{array}$$

Only the Fourier spectrum can be specified for the bilaterally unbounded signal  $c(t)$:

$$C(f) = {1}/{ 2} \cdot \delta (f - f_0) + {1}/{ 2} \cdot \delta (f + f_0) \quad {\rm with} \quad f_0 = {1}/{ T}= 1\,\,{\rm MHz.}$$

On the contrary,  for the causal cosine signal  $c_{\rm K}(t)$  the Laplace transform can also be specified:

$$C_{\rm L}(p) = \frac {p} { (p-{\rm j} \cdot 2 \pi/T)\cdot (p+{\rm j} \cdot 2 \pi/T)}\hspace{0.05cm} .$$

Accordingly,  the following holds for the Laplace transform of the causal sine function  $s_{\rm K}(t)$:

$$S_{\rm L}(p) = \frac {2 \pi/T} { (p-{\rm j} \cdot 2 \pi/T)\cdot (p+{\rm j} \cdot 2 \pi/T)}\hspace{0.05cm} .$$

The bilaterally unbounded sine function is denoted by  $s(t)$  and is shown as a blue–dotted curve in the below diagram.


The signals  $c(t)$,  $c_{\rm K}(t)$,  $s(t)$  and  $s_{\rm K}(t)$  are applied to the input of a low-pass filter of first-order with the following transfer function  (or impulse response):

$$H_{\rm L}(p) = \frac {2 /T} { p + 2 /T} \quad \bullet\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\circ\quad h(t) = {2}/{T} \cdot {\rm e}^{\hspace{0.05cm}-\hspace{0.03cm}2 \hspace{0.03cm}t/T}.$$
  • The corresponding output signals are denoted by  $y_{\rm C}(t)$,  $y_{\rm CK}(t)$,  $y_{\rm S}(t)$  and  $y_{\rm SK}(t)$ .
  • These signals are to be computed and correlated to each other in this exercise.





Please note:

  • The exercise belongs to the chapter  Inverse Laplace Transform.
  • The computations for subtask  (6)  are bulky.
  • For computing the signals  $y_{\rm CK}(t)$  and  $y_{\rm SK}(t)$,  for example the  residue theorem  can be used.


Questions

1

Compute the frequency response  $H(f)$  by magnitude and phase using  $H_{\rm L}(p)$.   What values are obtained for frequency  $ f = f_0 = 1/T = 1 \ \rm MHz$?

$|H(f = f_0)| \ = \ $

$a(f = f_0)\hspace{0.2cm} = \ $

$\ \rm Np$
${\rm arc} \ H(f = f_0)\ = \ $

$\ \rm deg$
$b(f = f_0)\hspace{0.24cm} = \ $

$\ \rm deg$

2

Compute the signal  $y_{\rm C}(t)$  at the filter output if the cosine signal  $c(t)$  is applied to the filter input.  What value is obtained for  $t = 0$?

$y_{\rm C}(t = 0) \ = \ $

3

Compute the output signal  $y_{\rm S}(t)$  if the sine signal  $s(t)$  is applied to the filter input.  What value is obtained for  $t = 0$?

$y_{\rm S}(t = 0) \ = \ $

4

Determine the influence length  $T_h$  of the filter impulse response,  that is the time at which  $h(t)$  has decayed to  $1\%$  of the maximum value.  Normalization to  $T$.

$T_h/T \ = \ $

5

Which statements are true for the signals  $y_{\rm CK}(t)$  and  $y_{\rm SK}(t)$ ?

The following holds:  $y_{\rm CK}(t) \equiv 0$  and  $y_{\rm SK}(t) \equiv 0$  for  $t < 0$.
The signal  $y_{\rm CK}(t)$  is approximately equal to  $y_{\rm C}(t)$ for  $t > T_h$ .
The causal signal  $y_{\rm SK}(t)$  is approximately equal to $y_{\rm S}(t)$ for  $t < T_h$ .

6

Using the residue theorem compute the signal  $y_{\rm CK}(t)$  after the filter if  $c_{\rm K}(t)$  is applied to the input.  What signal value occurs at time  $t = T/5$ ?

$y_\text{CK}(t = T/5) \ = \ $


Solution

(1)  Replacing the parameter  $T$  by  $1/f_0$  and   $p$   by  ${\rm j} \cdot 2 \pi f$ in  $H_{\rm L}(p)$  the following is obtained for the frequency response in general or for  $f_0 = 1 \ \rm MHz$:

$$H(f) = \frac {2 /T} { {\rm j} \cdot 2 \pi f + 2 /T}= \frac {f_0} { {\rm j} \cdot \pi f + f_0} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H(f= f_0) = \frac {1} { 1 + {\rm j} \cdot \pi }$$
$$\Rightarrow \hspace{0.3cm} |H(f= f_0)| = \frac {1} { \sqrt{1 + \pi^2 }} \hspace{0.15cm}\underline{= 0.303}\hspace{0.05cm},\hspace{0.2cm}a(f= f_0)= - {\rm ln}\,\, |H(f= f_0)| \hspace{0.15cm}\underline{\approx 1.194\,\,{\rm Np}}$$
$$\Rightarrow \hspace{0.3cm} {\rm arc}\,H(f= f_0)= - {\rm arctan}\,(\pi) \hspace{0.15cm}\underline{\approx -72^\circ} \hspace{0.05cm}, \hspace{0.2cm}b(f= f_0)= -{\rm arc}\,H(f= f_0) \hspace{0.15cm}\underline{\approx +72^\circ} \hspace{0.05cm}.$$


(2)  The output signal  $y_{\rm C}(t)$  is attenuated by the factor  $0.303$  and delayed by  $\tau \approx 72/360 \cdot T = T/5$  compared to the input signal  $c(t)$ .

  • Thus, this signal can also be described as follows:
$$y_{\rm C}(t) = \frac { \cos(2\pi {t}/{T}) + \pi \cdot \sin(2\pi {t}/{T})} { {1 + \pi^2 }}= 0.303 \cdot \cos(2\pi \cdot \frac{t-T/5}{T}) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} y_{\rm C}(t=0) = \frac {1} { {1 + \pi^2 }} \hspace{0.15cm}\underline{\approx 0.092} \hspace{0.05cm}.$$
  • This signal is shown dotted in blue in the left graph for solution  (5).


(3)  The signal  $y_{\rm S}(t)$  is also smaller by the attenuation factor  $0.303$  and delayed by the time period  $\tau = T/5$  compared to  $s(t)$ .

  • It can be described as follows:
$$y_{\rm S}(t) = \frac { -\pi \cdot \cos(2\pi {t}/{T}) + \sin(2\pi {t}/{T})} { {1 + \pi^2 }}= 0.303 \cdot \sin(2\pi \cdot \frac{t-T/5}{T}) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} y_{\rm S}(t=0) = -\frac {\pi} { {1 + \pi^2 }} \hspace{0.15cm}\underline{\approx -0.289} \hspace{0.05cm}.$$
  • This signal is sketched dotted in blue in the right graph for solution  (5) .


(4)  At  $T_h$  the impulse response  $h(t)$  should have decayed to  $1\%$  of the maximum value.  Thus,  the following holds:

$${\rm e}^{\hspace{0.05cm}-\hspace{0.03cm}2 \hspace{0.03cm}T_{ h}/T} = 0.01 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {T_{ h}}/{T} =\frac{1}{2} \cdot {\rm ln}\,\, \frac{1}{0.01} \hspace{0.15cm}\underline{\approx 2.3} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}h(t=0) = {2}/{T}\hspace{0.05cm}, \hspace{0.2cm}h(t=T_{ h}) = {0.02}/{T}\hspace{0.05cm}.$$
Transient behavior of a causal cosine and a causal sine signal


(5)  The statements 1 and 2 are correct:

  • The causal signals  $y_{\rm CK}(t)$  and  $y_{\rm SK}(t)$  must be identical to zero for  $t < 0$ .
  • However,  since the impulse response  $h(t)$  of the considered filter (nearly) vanishes for  $t > T_h$,  it does not matter whether the unbounded cosine signal  $c(t)$  or the causal signal  $c_{\rm K}(t)$  is applied to the input after the transient effect is over.
  • The same is true for the sinusoidal signals:   For  $t >T_{ h}$,    $y_{\rm SK}(t)=y_{\rm S}(t)$ holds.


The graph shows the output signals  $y_{\rm C}(t)$  and  $y_{\rm CK}(t)$  for cosine-shaped input on the left and the signals  $y_{\rm S}(t)$  and  $y_{\rm SK}(t)$  for sinusoidal input on the right.  Note the transit time  of  $T/5$  $($corresponding to the phase  $72^\circ)$  in both cases.

  • For  $y_{\rm CK}(t)$  the first wave peaks are smaller than  $1$  to achieve the correct phase position of  $y_{\rm C}(t)$ .
  • In contrast,  for  $y_{\rm SK}(t)$  the first wave peaks are greater than  $1$  to achieve the correct phase position of  $y_{\rm S}(t)$ .


(6)  Considering  $p_{\rm x1}= {\rm j} \cdot {2\pi}/{T} , \hspace{0.1cm}p_{\rm x2}= -{\rm j} \cdot {2\pi}/{T} , \hspace{0.1cm} p_{\rm x3}= -{2}/{T} \hspace{0.05cm}$  the following can be written for the Laplace transform of the signal  $y_{\rm CK}(t)$ :

$$Y_{\rm L}(p) = \frac {-p_{{\rm x}3}\cdot p} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})(p-p_{{\rm x}3})} \hspace{0.05cm}.$$

The time function  $y_{\rm CK}(t)$  is thus composed of three parts according to the residue theorem:

  • Considering  $p_{\rm x2}= -p_{\rm x1}$  the first part is
$$y_1(t)= {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{0.05cm}\{Y_{\rm L}(p)\cdot {\rm e}^{\hspace{0.03cm}p t}\}= \frac {-p_{{\rm x}3}\cdot p} { (p-p_{{\rm x}2})(p-p_{{\rm x}3})}\cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}= \frac {-p_{{\rm x}3}\cdot p_{{\rm x}1}} { (p_{{\rm x}1}-p_{{\rm x}2})(p_{{\rm x}1}-p_{{\rm x}3})}\cdot {\rm e}^{\hspace{0.03cm}p_{{\rm x}1}\cdot \hspace{0.03cm}t}= \frac {-p_{{\rm x}3}/2} { p_{{\rm x}1}-p_{{\rm x}3}}\cdot {\rm e}^{\hspace{0.03cm}p_{{\rm x}1}\cdot \hspace{0.03cm}t} \hspace{0.05cm} .$$
  • Similarly,  the following is obtained for the second part:
$$y_2(t)= {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{0.05cm}\{Y_{\rm L}(p)\cdot {\rm e}^{\hspace{0.03cm}p t}\}= \frac {-p_{{\rm x}3}\cdot p} { (p-p_{{\rm x}1})(p-p_{{\rm x}3})}\cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}=\frac {-p_{{\rm x}3}\cdot p_{{\rm x}2}} { (p_{{\rm x}2}-p_{{\rm x}1})(p_{{\rm x}2}-p_{{\rm x}3})}\cdot {\rm e}^{\hspace{0.03cm}p_{{\rm x}2}\cdot \hspace{0.03cm}t}= \frac {p_{{\rm x}3}/2} { p_{{\rm x}1}+p_{{\rm x}3}}\cdot {\rm e}^{-p_{{\rm x}1}\cdot \hspace{0.03cm}t} \hspace{0.05cm} .$$
  • Combining both parts and considering the numerical values of  $p_{\rm x1}$  and  $p_{\rm x3}$:
$$y_{1\hspace{0.03cm}+2}(t)= \frac {1/T} { 2/T + {\rm j} \cdot 2\pi /T} \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm} t/T}+\frac {1/T} { 2/T - {\rm j} \cdot 2\pi /T} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T}= \frac {1/2} { 1 + {\rm j} \cdot \pi } \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T}+\frac {1/2} { 1 - {\rm j} \cdot \pi } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T}$$
$$\Rightarrow \hspace{0.3cm} y_{1\hspace{0.03cm}+2}(t)\hspace{0.25cm} = \frac {1/2 \cdot (1 - {\rm j} \cdot \pi)} { 1 + \pi^2 } \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T}+\frac {1/2 \cdot (1 + {\rm j} \cdot \pi)} { 1 + \pi^2 } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T} \hspace{0.05cm} $$
  • Using Euler's theorem this can also be expressed as follows:
$$y_{1\hspace{-0.03cm}+2} (t) = \frac { \cos(2\pi {t}/{T}) + \pi \cdot \sin(2\pi {t}/{T})} { {1 + \pi^2 }}= y_{\rm C}(t)\hspace{0.05cm}.$$
It can be seen that  $y_{1\hspace{0.03cm}+2}(t)$  is equal to the signal  $y_{\rm C}(t)$  computed in subtask  (2) .
  • Finally,  the following is obtained for the last residual:
$$y_3(t)=\frac {-p_{{\rm x}3}^2} { (p_{{\rm x}3}-p_{{\rm x}1}) (p_{{\rm x}3}-p_{{\rm x}2})} \cdot {\rm e}^{\hspace{0.05cm}p_{{\rm x}3}\cdot \hspace{0.03cm}t}= \frac {-(2/T)^2 \cdot {\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T}} { (-2/T-{\rm j} \cdot 2\pi /T) (-2/T+{\rm j} \cdot 2\pi /T)} =\frac {- {\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T} } { (1+{\rm j} \cdot \pi ) (1-{\rm j} \cdot \pi)} =\frac {- {\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T}} { 1+\pi^2} \hspace{0.05cm} .$$
  • Thus,  the output signal is as follows for a causal cosine signal applied to the input:
$$y_{\rm CK}(t) = y_1(t)+y_2(t)+y_3(t) = \frac { \cos(2\pi {t}/{T}) + \pi \cdot \sin(2\pi {t}/{T})-{\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T}} { {1 + \pi^2 }}$$
$$\Rightarrow \hspace{0.3cm}y_{\rm CK}(t = {T}/{5}) = \frac { \cos(72^\circ) + \pi \cdot \sin(72^\circ)-{\rm e}^{\hspace{0.05cm}-0.4}} { {1 + \pi^2 }} \hspace{0.15cm}\underline{ \approx 0.24} < 0.303\hspace{0.05cm} .$$
For comparison:   The signal  $y_{\rm C}(t)$  has the value  $0.303$   at this time.
  • In contrast to this,  the following arises as a result in general and specifically at the time of the first maximum at  $t = 0.45 \cdot T$  for the causal sinusoidal signal applied to the input:
$$y_{\rm SK}(t) = \frac { -\pi \cdot \cos(2\pi {t}/{T}) + \sin(2\pi {t}/{T})+\pi \cdot {\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T}} { {1 + \pi^2 }}$$
$$\Rightarrow \hspace{0.3cm} y_{\rm SK}(t = 0.45 \cdot T) = \frac { -\pi \cdot \cos(162^\circ) + \sin(162^\circ)+\pi \cdot{\rm e}^{\hspace{0.05cm}-0.9}} { {1 + \pi^2 }} \approx 0.42 > 0.303\hspace{0.05cm} .$$