Difference between revisions of "Aufgaben:Exercise 3.6Z: Complex Exponential Function"

From LNTwww
Line 64: Line 64:
 
*According to  [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_Amplidute_and_Phase|Euler's theorem]] , this can also be written.
 
*According to  [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_Amplidute_and_Phase|Euler's theorem]] , this can also be written.
 
:$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
 
:$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
:*The <u>real part of this signal is always zero.</u>.  
+
:*The <u>real part of this signal is always zero</u>.  
 
:*At&nbsp; $t = 1 \, &micro;\text {s}$&nbsp; the following applies to the imaginary part:&nbsp; $\text{Im}[g(t = 1 \, &micro; \text {s})] = \;\underline{0.707\, \text{V}}$.
 
:*At&nbsp; $t = 1 \, &micro;\text {s}$&nbsp; the following applies to the imaginary part:&nbsp; $\text{Im}[g(t = 1 \, &micro; \text {s})] = \;\underline{0.707\, \text{V}}$.
  

Revision as of 15:40, 27 March 2021

Representation in the spectral domain:
complex exponential function and suitable splitting

In connection with  bandpass systemes , one-sided spectra are often used. In the illustration you can see such a one-sided spectral function  ${X(f)}$, which results in a complex time signal  ${x(t)}$ . In the sketch below,  ${X(f)}$  is split into an even component  ${G(f)}$  - with respect to the frequency - and an odd component  ${U(f)}$ .





Hints:


Questions

1

What is the time function  $g(t)$  that fits  $G(f)$? How large is   $g(t = 1 \, µ \text {s})$?

$\text{Re}\big[g(t = 1 \, µ \text {s})\big] \ = \ $

 $\text{V}$
$\text{Im}\big[g(t = 1 \, µ \text {s})\big]\ = \ $

 $\text{V}$

2

What is the time function  $u(t)$  that fits  $U(f)$? What is the value of  $u(t = 1 \, µ \text {s})$?

$\text{Re}\big[u(t = 1 \, µ \text {s})\big]\ = \ $

 $\text{V}$
$\text{Im}\big[u(t = 1 \, µ \text {s})\big]\ = \ $

 $\text{V}$


Solution

(1)  $G(f)$  is the spectral function of a cosine signal with period  $T_0 = 1/f_0 = 8 \, µ\text {s}$:

$$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$

At  $t = 1 \, µ\text {s}$  the signal value is equal to  $A \cdot \cos(\pi /4)$:

  • The real part is  $\text{Re}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$,
  • The imaginary part is  $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.}$


(2)  Starting from the Fourier correspondence

$$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$

is obtained by applying the shift theorem twice (in the frequency domain):

$$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t} - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).$$
$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
  • The real part of this signal is always zero.
  • At  $t = 1 \, µ\text {s}$  the following applies to the imaginary part:  $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$.


(3)  Because  $X(f) = G(f) + U(f)$  also holds:

$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$

This result can be summarised by  Euler's theorem  as follows:

$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .$$

The given alternatives 1 and 3 are correct:

  • The signal rotates in the complex plane in a mathematically positive direction, i.e. counterclockwise.
  • For one rotation, the "pointer" needs the period  $T_0 = 1/f_0 = 8 \, µ\text {s}$.