Difference between revisions of "Aufgaben:Exercise 3.6Z: Examination Correction"

From LNTwww
Line 8: Line 8:
 
Further, the exercise must take into account:
 
Further, the exercise must take into account:
 
*The maximum achievable score is  $100$.  The best student achieved  $88$  points.
 
*The maximum achievable score is  $100$.  The best student achieved  $88$  points.
*Due to the relatively large number of participants, the achieved score – this is the random variable  $z$  – with good approximation a  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Probability_density_function_.26_cumulative_density_function|Gaussian_Distribution]]  with mean  $m_z = 60$  and rms (standard deviation)  $\sigma_z = 10$.
+
*Due to the relatively large number of participants, the achieved score – this is the random variable  $z$  – with good approximation a  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Probability_density_function_.26_cumulative_density_function|Gaussian distribution]]  with mean  $m_z = 60$  and rms (standard deviation)  $\sigma_z = 10$.
 
*In the correction, not only whole scores were assigned, but also (arbitrary) intermediate values, so that the random variable  $z$  can be taken as "continuous" with good approximation.
 
*In the correction, not only whole scores were assigned, but also (arbitrary) intermediate values, so that the random variable  $z$  can be taken as "continuous" with good approximation.
  
Line 32: Line 32:
  
 
<quiz display=simple>
 
<quiz display=simple>
{What criteria should be considered in problem creation so that the score will result in "approximately a normal distribution"?
+
{What criteria should be considered in problem creation so that the grades will result in "approximately a normal distribution"?
 
|type="[]"}
 
|type="[]"}
 
+ There are many exam participants.
 
+ There are many exam participants.
Line 62: Line 62:
 
{What will be the mean grade on this exam?&nbsp; Consider the result of subtask&nbsp; '''(5)''' to solve this subtask.
 
{What will be the mean grade on this exam?&nbsp; Consider the result of subtask&nbsp; '''(5)''' to solve this subtask.
 
|type="{}"}
 
|type="{}"}
$\rm mean grade \ = \ $ { 3 3% }
+
$\rm mean\hspace{0.15cm}grade \ = \ $ { 3 3% }
  
 
</quiz>
 
</quiz>
Line 68: Line 68:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 1 und 3</u>:
+
'''(1)'''&nbsp; Correct are <u>the solutions 1 and 3</u>:
*Nach dem zentralen Grenzwertsatz erh&auml;lt man f&uuml;r die Summe vieler unabh&auml;ngiger Gr&ouml;&szlig;en eine Gau&szlig;verteilung.
+
*According to the central limit theorem, a Gaussian distribution is obtained for the sum of many independent quantities.
*Im Umkehrschluss ergibt sich bei nur wenigen und dazu noch abh&auml;ngigen Aufgaben keine Gaußverteilung.  
+
*Conversely, if there are only a few dependent tasks, there is no Gaussian distribution.  
*Eine einzige Ja/Nein-Frage f&uuml;hrt zu einer Zweipunktverteilung&nbsp; $(0$ Punkte oder Maximalpunktzahl$)$.  
+
*A single yes/no question leads to a two-point distribution ($0$ points or maximum number of points).  
*Auch bei Einhaltung dieser Gebote wird man bei sehr wenigen Teilnehmern nicht mit einer Gaußverteilung rechnen k&ouml;nnen.
+
*Even if these imperatives are followed, a Gaussian distribution will not be expected for very few participants.
  
  
  
  
'''(2)'''&nbsp; Man bekommt eine "1.0" mit&nbsp; $82$&nbsp; Punkten oder mehr.&nbsp;  
+
'''(2)'''&nbsp; One gets a "1.0" with&nbsp; $82$&nbsp; points or more.&nbsp;  
*Deshalb gilt mit dem Mittelwert&nbsp; $m_z = 60$&nbsp; und der Streuung&nbsp; $\sigma_z = 10$:
+
*Therefore, with the mean&nbsp; $m_z = 60$&nbsp; and the rms&nbsp; $\sigma_z = 10$:
 
:$$\rm Pr(\it z\ge \rm 82)=\rm Q\Bigg(\frac{\rm 82-60}{\rm 10}\Bigg)=\rm Q(\rm 2.2)
 
:$$\rm Pr(\it z\ge \rm 82)=\rm Q\Bigg(\frac{\rm 82-60}{\rm 10}\Bigg)=\rm Q(\rm 2.2)
 
\hspace{0.15cm}{=\rm 0.0139}.$$
 
\hspace{0.15cm}{=\rm 0.0139}.$$
*Bei tausend Teilnehmern folgt daraus&nbsp; $N_\text{1.0}\hspace{0.15cm}\underline{= 14}$.
+
*For a thousand participants, it follows&nbsp; $N_\text{1.0}\hspace{0.15cm}\underline{= 14}$.
  
  
  
'''(3)'''&nbsp; Mit weniger als&nbsp; $46$&nbsp; Punkten hat man die Pr&uuml;fung nicht bestanden:
+
'''(3)'''&nbsp; With less than&nbsp; $46$&nbsp; points, one has failed the exam:
 
:$$\rm Pr(\it z<\rm 46)=\rm Pr(\it z \le \rm 46)=\rm \phi\Bigg(\frac{\rm 46-60}{\rm 10}\Bigg)=\rm \phi(\rm -1.4)=\rm Q(\rm 1.4)=\rm 0.0807.$$
 
:$$\rm Pr(\it z<\rm 46)=\rm Pr(\it z \le \rm 46)=\rm \phi\Bigg(\frac{\rm 46-60}{\rm 10}\Bigg)=\rm \phi(\rm -1.4)=\rm Q(\rm 1.4)=\rm 0.0807.$$
*Also m&uuml;ssen wohl <u>81 Studenten nochmals antreten</u>.
+
*So <u>81 students have to compete again</u>.
  
  
  
'''(4)'''&nbsp; Die Punktedifferenz&nbsp; $82 - 46 = 36$&nbsp; muss auf neun Notenstufen&nbsp; $(1.3$, ... , $4.0)$&nbsp; aufgeteilt werden.  
+
'''(4)'''&nbsp; The difference in points&nbsp; $82 - 46 = 36$&nbsp; must be divided among nine grade intervals&nbsp; $(1.3$, ... , $4.0)$&nbsp; .  
*Jedes Intervall umfasst somit&nbsp; $4$&nbsp; Punkte.  
+
*Each interval thus comprises&nbsp; $4$&nbsp; points.  
*Beispielsweise erh&auml;lt man die Note "3.0", wenn man&nbsp; $58$&nbsp; bis&nbsp; $62$&nbsp; Punkte erreicht.  
+
*For example, one receives a grade of "3.0" if one&nbsp; $58$&nbsp; to&nbsp; $62$&nbsp; points.  
*Die Wahrscheinlichkeit, dass die Punktzahl in diesem Bereich liegt, ergibt sich zu
+
*The probability that the grade is in this range is given by.
 
:$$\rm Pr(\rm 58 <\it z<\rm 62)=\rm \phi\Bigg(\frac{\rm 62-60}{\rm 10}\Bigg)-\rm \phi\Bigg(\frac{\rm 58-60}{\rm 10}\Bigg).$$
 
:$$\rm Pr(\rm 58 <\it z<\rm 62)=\rm \phi\Bigg(\frac{\rm 62-60}{\rm 10}\Bigg)-\rm \phi\Bigg(\frac{\rm 58-60}{\rm 10}\Bigg).$$
  
Unter Ausnutzung der Symmetrie erh&auml;lt man:
+
Taking advantage of the symmetry, one obtains:
:$$\rm Pr(\rm 58 <\it z<\rm 62) = \rm \phi(\rm 0.2)-\rm \phi(\rm -0.2) = \rm 0.5792-\rm 0.4207=0.1587\hspace{0.2cm}\hspace{0.15cm}\underline{(159 \hspace{0.1cm}\rm Teilnehmer)}.$$
+
:$$\rm Pr(\rm 58 <\it z<\rm 62) = \rm \phi(\rm 0.2)-\rm \phi(\rm -0.2) = \rm 0.5792-\rm 0.4207=0.1587\hspace{0.2cm}\hspace{0.15cm}\underline{(159 \hspace{0.1cm}\rm participants)}.$$
  
''Anmerkungen:''
+
''Notes:''
*$z$&nbsp; ist als kontinuierliche Zufallsgröße aufzufassen. Deshalb ist die Punktzahl&nbsp; $62$&nbsp; gleichzeitig die obere Grenze für den "3.0"&ndash;Bereich als auch die untere Grenze für die Note "2.7" ist.
+
*$z$&nbsp; is to be taken as a continuous random variable. Therefore, the score&nbsp; $62$&nbsp; is simultaneously the upper bound for the "3.0"&ndash;range as well as the lower bound for the grade "2.7."  
*Wäre&nbsp; $z$&nbsp; nur ganzzahlig, so müsste&nbsp; $62$&nbsp; je nach Stimmung des Korrektors  entweder der Note "2.7" oder der Note "3.0" zugeordnet werden.&nbsp; Natürlich müsste das bei allen Prüflingen in gleicher Weise gemacht werden.
+
*If&nbsp; $z$&nbsp; were only an integer, then&nbsp; $62$&nbsp; would have to be assigned to either the "2.7" grade or the "3.0" grade, depending on the mood of the corrector.&nbsp; Of course, this would have to be done in the same way for all examinees.
  
  
  
'''(5)'''&nbsp; Analog zur Musterl&ouml;sung der Teilaufgabe&nbsp; '''(4)'''&nbsp; gilt f&uuml;r die Note "2.7":
+
'''(5)'''&nbsp; Analogous to the sample solution of the subtask&nbsp; '''(4)'''&nbsp; applies to the grade "2.7":
 
:$$\rm Pr(\rm 62 <\it z<\rm 66)=\rm \phi(\rm 0.6)-\rm \phi(\rm 0.2)=\rm 0.7257-\rm 0.5792=0.1465.$$
 
:$$\rm Pr(\rm 62 <\it z<\rm 66)=\rm \phi(\rm 0.6)-\rm \phi(\rm 0.2)=\rm 0.7257-\rm 0.5792=0.1465.$$
  
*Aus Symmetriegr&uuml;nden erh&auml;lt man f&uuml;r die Note "3.3" den gleichen Wert:
+
*For reasons of symmetry, the same value is obtained for the grade "3.3":
 
:$$\rm Pr(\rm 54 <\it z<\rm 58)=\rm \phi(-\rm 0.2)-\rm \phi(-\rm 0.6)= \rm Q(\rm 0.2)-\rm Q(\rm 0.6)=\rm 0.1465.$$
 
:$$\rm Pr(\rm 54 <\it z<\rm 58)=\rm \phi(-\rm 0.2)-\rm \phi(-\rm 0.6)= \rm Q(\rm 0.2)-\rm Q(\rm 0.6)=\rm 0.1465.$$
  
*Also erhalten <u>je 146 Teilnehmer die Note "2.7" bzw. "3.3"</u>.
+
*So <u>each 146 participants receive a grade of "2.7" or "3.3"</u>.
  
  
  
'''(6)'''&nbsp; Mit der hier getroffenen Punkte&ndash;Noten&ndash;Zuordnung sind nicht nur die Punkte um&nbsp; $m_z = 60$&nbsp; symmetrisch verteilt, sondern auch die Noten um&nbsp; „3.0“.&nbsp; Es gibt
+
'''(6)'''&nbsp; With the points&ndash;scores&ndash;assignment made here, not only are the points distributed around&nbsp; $m_z = 60$&nbsp; symmetrically, but also the scores around&nbsp; "3.0".&nbsp; There are
*genau so viele „2.7“ wie „3.3“&nbsp; $($um&nbsp; $±0.3$&nbsp; von&nbsp; $3.0$&nbsp; entfernt$)$,  
+
*exactly as many "2.7"s as "3.3"s&nbsp; $($around&nbsp; $±0.3$&nbsp; away from&nbsp; $3.0$&nbsp;$)$,  
*genau so viele „2.3“ wie „3.7“&nbsp; $(3.0 ±0.7)$, und
+
*exactly as many "2.3 "s as "3.7"s&nbsp; $(3.0 ±0.7)$, and
*genau so viele „1.0“ wie „5.0“.  
+
*exactly as many "1.0 "s as "5.0 "s.  
  
  
Deshalb ergibt sich die $\rm Mittelnote \hspace{0.15cm}\underline{ 3.0}$.
+
Therefore, the $\rm mean\hspace{0.15cm} grade\hspace{0.15cm}\underline{ 3.0}$ results.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 01:40, 2 January 2022

table for  ${\rm \phi}(x)$  and  ${\rm Q}(x)$

In an exam at the TU Munich  $1000$  students participated.  From the grade "4.0" upwards up to "1.0" the exam is considered to be passed.  The exam regulations provide for the following grades:

$$1.0, \ 1.3, \ 1.7, \ 2.0, \ 2.3, \ 2.7, \ 3.0, \ 3.3, \ 3.7, \ 4.0, \ 4.3, \ 4.7, \ 5.0.$$

Further, the exercise must take into account:

  • The maximum achievable score is  $100$.  The best student achieved  $88$  points.
  • Due to the relatively large number of participants, the achieved score – this is the random variable  $z$  – with good approximation a  Gaussian distribution  with mean  $m_z = 60$  and rms (standard deviation)  $\sigma_z = 10$.
  • In the correction, not only whole scores were assigned, but also (arbitrary) intermediate values, so that the random variable  $z$  can be taken as "continuous" with good approximation.


For scoring, the guidelines given are:

  • Even with six points less than the best  $($so from  $82$  points$)$  one shall get "1.0".
  • If one  $46\%$  of the total score, one has passed the exam.
  • The points/grades assignment shall be linear.




Hints:

  • Especially in the school curriculum, the  "Gaussian distribution"  is often called  "normal distribution"  This is not quite correct:
  • A normally distributed random variable  $z$  does have a Gaussian PDF and CDF,  but always with mean  $m_z = 0$  and rms  $\sigma_z = 1$.


Questions

1

What criteria should be considered in problem creation so that the grades will result in "approximately a normal distribution"?

There are many exam participants.
The subproblems depend on each other to a large extent.
There are many independent problems.
The exam consists of a single yes/no question.

2

How many examinees are expected to score "1.0"?

$N_\text{1.0} \ = \ $

3

How many examinees are likely to fail the exam?  Take into account that  $z$  can be taken as a continuous random variable.

$N_\text{4.3 ... 5.0} \ = \ $

4

Specify the points/grades–assignment.  At what point do you get a "3.0"?  How many examinees will get this grade?

$N_\text{3.0} \ = \ $

5

How many examinees are expected to receive the grade "2.7"?  Justify why exactly that many examinees will receive the grade "3.3".

$N_\text{2.7} \ = \ $

6

What will be the mean grade on this exam?  Consider the result of subtask  (5) to solve this subtask.

$\rm mean\hspace{0.15cm}grade \ = \ $


Solution

(1)  Correct are the solutions 1 and 3:

  • According to the central limit theorem, a Gaussian distribution is obtained for the sum of many independent quantities.
  • Conversely, if there are only a few dependent tasks, there is no Gaussian distribution.
  • A single yes/no question leads to a two-point distribution ($0$ points or maximum number of points).
  • Even if these imperatives are followed, a Gaussian distribution will not be expected for very few participants.



(2)  One gets a "1.0" with  $82$  points or more. 

  • Therefore, with the mean  $m_z = 60$  and the rms  $\sigma_z = 10$:
$$\rm Pr(\it z\ge \rm 82)=\rm Q\Bigg(\frac{\rm 82-60}{\rm 10}\Bigg)=\rm Q(\rm 2.2) \hspace{0.15cm}{=\rm 0.0139}.$$
  • For a thousand participants, it follows  $N_\text{1.0}\hspace{0.15cm}\underline{= 14}$.


(3)  With less than  $46$  points, one has failed the exam:

$$\rm Pr(\it z<\rm 46)=\rm Pr(\it z \le \rm 46)=\rm \phi\Bigg(\frac{\rm 46-60}{\rm 10}\Bigg)=\rm \phi(\rm -1.4)=\rm Q(\rm 1.4)=\rm 0.0807.$$
  • So 81 students have to compete again.


(4)  The difference in points  $82 - 46 = 36$  must be divided among nine grade intervals  $(1.3$, ... , $4.0)$  .

  • Each interval thus comprises  $4$  points.
  • For example, one receives a grade of "3.0" if one  $58$  to  $62$  points.
  • The probability that the grade is in this range is given by.
$$\rm Pr(\rm 58 <\it z<\rm 62)=\rm \phi\Bigg(\frac{\rm 62-60}{\rm 10}\Bigg)-\rm \phi\Bigg(\frac{\rm 58-60}{\rm 10}\Bigg).$$

Taking advantage of the symmetry, one obtains:

$$\rm Pr(\rm 58 <\it z<\rm 62) = \rm \phi(\rm 0.2)-\rm \phi(\rm -0.2) = \rm 0.5792-\rm 0.4207=0.1587\hspace{0.2cm}\hspace{0.15cm}\underline{(159 \hspace{0.1cm}\rm participants)}.$$

Notes:

  • $z$  is to be taken as a continuous random variable. Therefore, the score  $62$  is simultaneously the upper bound for the "3.0"–range as well as the lower bound for the grade "2.7."
  • If  $z$  were only an integer, then  $62$  would have to be assigned to either the "2.7" grade or the "3.0" grade, depending on the mood of the corrector.  Of course, this would have to be done in the same way for all examinees.


(5)  Analogous to the sample solution of the subtask  (4)  applies to the grade "2.7":

$$\rm Pr(\rm 62 <\it z<\rm 66)=\rm \phi(\rm 0.6)-\rm \phi(\rm 0.2)=\rm 0.7257-\rm 0.5792=0.1465.$$
  • For reasons of symmetry, the same value is obtained for the grade "3.3":
$$\rm Pr(\rm 54 <\it z<\rm 58)=\rm \phi(-\rm 0.2)-\rm \phi(-\rm 0.6)= \rm Q(\rm 0.2)-\rm Q(\rm 0.6)=\rm 0.1465.$$
  • So each 146 participants receive a grade of "2.7" or "3.3".


(6)  With the points–scores–assignment made here, not only are the points distributed around  $m_z = 60$  symmetrically, but also the scores around  "3.0".  There are

  • exactly as many "2.7"s as "3.3"s  $($around  $±0.3$  away from  $3.0$ $)$,
  • exactly as many "2.3 "s as "3.7"s  $(3.0 ±0.7)$, and
  • exactly as many "1.0 "s as "5.0 "s.


Therefore, the $\rm mean\hspace{0.15cm} grade\hspace{0.15cm}\underline{ 3.0}$ results.