Difference between revisions of "Aufgaben:Exercise 3.7: Impulse Response of a High-Pass Filter"

From LNTwww
 
(6 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:EN_LZI_A_3_7.png|right|frame|Hochpass zweiter Ordnung]]
+
[[File:EN_LZI_A_3_7.png|right|frame|High-pass filter of second-order]]
Wir gehen von der skizzierten Anordnung aus.  Die Übertragungsfunktionen der beiden identischen Hochpässe lauten:
+
We assume the sketched arrangement.  The transfer functions of the two identical high-pass filters are:
 
:$$H_{\rm L}^{(1)}(p) = H_{\rm L}^{(2)}(p) =\frac{p}{p+A}
 
:$$H_{\rm L}^{(1)}(p) = H_{\rm L}^{(2)}(p) =\frac{p}{p+A}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
Da die Vierpole durch einen Trennverstärker widerstandsmäßig entkoppelt sind, lässt sich für die Gesamtübertragungsfunktion schreiben:
+
Since the two-port networks are decoupled in terms of resistance by an isolation amplifier,  the total transfer function can be written as follows:
 
:$$H_{\rm L}(p) = H_{\rm L}^{(1)}(p) \cdot H_{\rm L}^{(2)}(p)
 
:$$H_{\rm L}(p) = H_{\rm L}^{(1)}(p) \cdot H_{\rm L}^{(2)}(p)
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
Gleichzeitig ist bekannt, dass folgende Gleichung gültig ist:
+
At the same time it is known that the following equation is valid:
 
:$$H_{\rm L}(p)  =\frac{4}{1/p^2 + 4/p +4}
 
:$$H_{\rm L}(p)  =\frac{4}{1/p^2 + 4/p +4}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
Stellt man diese Funktion in Pol–Nullstellen–Form dar, so wird sich herausstellen, dass hier die Anzahl der Nullstellen  $(Z)$  gleich der Anzahl der Pole  $(N)$  ist.  Eine direkte Anwendung des Residuensatzes ist hier deshalb nicht möglich.
+
If this function is represented in pole–zero notation,  it will turn out that here the number of zeros  $(Z)$  is equal to the number of poles  $(N)$ .  Therefore,  a direct application of the residue theorem is not possible here.
  
Um die Zeitfunktion  $h(t)$  berechnen zu können, muss vielmehr eine Partialbruchzerlegung entsprechend 
+
Instead,  in order to compute the time function  $h(t)$  a partial fraction decomposition corresponding to 
 
$H_{\rm L}(p)  =1- H_{\rm L}\hspace{-0.05cm}'(p)
 
$H_{\rm L}(p)  =1- H_{\rm L}\hspace{-0.05cm}'(p)
 
  \hspace{0.05cm}$ 
 
  \hspace{0.05cm}$ 
vorgenommen werden. Damit gilt für die Impulsantwort:
+
must be made.  Thus,  the following holds for the impulse response:
 
:$$h(t)  = \delta(t)- h\hspace{0.03cm}'(t)
 
:$$h(t)  = \delta(t)- h\hspace{0.03cm}'(t)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Bezüglich &nbsp;$H_{\rm L}'(p)$&nbsp; gilt &nbsp;$Z' < N'$. Somit kann der kontinuierliche Anteil &nbsp;$h'(t)$&nbsp; der Impulsantwort  mit dem Residuensatz ermittelt werden.
+
$Z' < N'$&nbsp; holds with respect to &nbsp;$H_{\rm L}'(p)$.&nbsp; Thus,&nbsp; the continuous component &nbsp;$h'(t)$&nbsp; of the impulse response can be determined using the residue theorem.
  
  
Line 28: Line 28:
  
  
 
+
Please note:  
 
 
''Please note:''
 
 
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
 
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
+
*The residual of an &nbsp;$l$&ndash;fold pole &nbsp;$p_{\rm x}$&nbsp; within the function &nbsp;$H_{\rm L}(p)$&nbsp; is:
*Das Residium eines &nbsp;$l$&ndash;fachen Pols &nbsp;$p_{\rm x}$&nbsp; innerhalb der Funktion &nbsp;$H_{\rm L}(p)$&nbsp; lautet:
 
 
:$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}}
 
:$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}}
 
  \hspace{0.03cm}\{H_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p t}\}=
 
  \hspace{0.03cm}\{H_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p t}\}=
Line 41: Line 38:
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}}
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
*Die Ableitung des Produkts &nbsp;$y(x) = f(x)  \cdot g(x)$&nbsp; ist wie folgt gegeben:
+
*The derivative of the product &nbsp;$y(x) = f(x)  \cdot g(x)$&nbsp; is given as follows:
 
:$$\frac{{\rm d}{\hspace{0.05cm}y(x)}}{{\rm d}\hspace{0.05cm}x}= \frac{{\rm d}{\hspace{0.05cm}f(x)}}{{\rm
 
:$$\frac{{\rm d}{\hspace{0.05cm}y(x)}}{{\rm d}\hspace{0.05cm}x}= \frac{{\rm d}{\hspace{0.05cm}f(x)}}{{\rm
 
  d}\hspace{0.05cm}x}\cdot g(x) + \frac{{\rm d}{\hspace{0.05cm}g(x)}}{{\rm
 
  d}\hspace{0.05cm}x}\cdot g(x) + \frac{{\rm d}{\hspace{0.05cm}g(x)}}{{\rm
Line 51: Line 48:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Stellen Sie &nbsp;$H_{\rm L}(p)$&nbsp; in Pol&ndash;Nullstellen&ndash;Form dar. &nbsp;Wieviele Nullstellen &nbsp;$(Z)$&nbsp; und Pole &nbsp;$(N)$&nbsp; gibt es? &nbsp;Wie groß ist der konstante Faktor &nbsp;$K$?
+
{Represent &nbsp;$H_{\rm L}(p)$&nbsp; in pole&ndash;zero notation. &nbsp;How many zeros &nbsp;$(Z)$&nbsp; and poles &nbsp;$(N)$&nbsp; are there? &nbsp;What is the constant factor &nbsp;$K$?
 
|type="{}"}
 
|type="{}"}
 
$Z \hspace{0.28cm} = \ $  { 2 }
 
$Z \hspace{0.28cm} = \ $  { 2 }
Line 58: Line 55:
  
  
{Wie groß ist der Parameter $A$&nbsp; der beiden Teilvierpolen?
+
{What is the parameter $A$&nbsp; of the two partial two-port networks?
 
|type="{}"}
 
|type="{}"}
 
$A \ =  \ $ { 0.5 3% }
 
$A \ =  \ $ { 0.5 3% }
  
  
{Wandeln Sie &nbsp;$H_{\rm L}(p) = 1 - H_{\rm L}'(p)$&nbsp; um. &nbsp;Welches Ergebnis erhält man für &nbsp;$H_{\rm L}'(p)$?
+
{Convert &nbsp;$H_{\rm L}(p) = 1 - H_{\rm L}'(p)$&nbsp;. &nbsp;What result is obtained for &nbsp;$H_{\rm L}'(p)$?
|type="[]"}
+
|type="()"}
 
- $H_{\rm L}'(p) = p^2/(p+0.5)^2$,
 
- $H_{\rm L}'(p) = p^2/(p+0.5)^2$,
 
- $H_{\rm L}'(p) = p/(p+0.5)^2$,
 
- $H_{\rm L}'(p) = p/(p+0.5)^2$,
Line 70: Line 67:
  
  
{Berechnen Sie die Zeitfunktion &nbsp;$h'(t)$. &nbsp;Welche Zahlenwerte ergeben sich für die angegebenen Zeitpunkte?
+
{Compute the time function &nbsp;$h'(t)$. &nbsp;What are the numerical values for the given times?
 
|type="{}"}
 
|type="{}"}
 
$h'(t = 0) \ = \ $  { 1 3% }
 
$h'(t = 0) \ = \ $  { 1 3% }
Line 82: Line 79:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Ausgehend von der vorgegebenen Gleichung kann&nbsp; $H_{\rm L}(p)$&nbsp; wie folgt umgeformt werden:
+
'''(1)'''&nbsp; Starting from the given equation,&nbsp; $H_{\rm L}(p)$&nbsp; can be transformed as follows:
 
:$$H_{\rm L}(p)  =\frac{4}{1/p^2 + 4/p +4}=\frac{p^2}{p^2 + p +1/4}=\frac{p^2}{(p +1/2)^2}
 
:$$H_{\rm L}(p)  =\frac{4}{1/p^2 + 4/p +4}=\frac{p^2}{p^2 + p +1/4}=\frac{p^2}{(p +1/2)^2}
 
  \hspace{0.3cm}
 
  \hspace{0.3cm}
Line 91: Line 88:
  
  
'''(2)'''&nbsp; Die Gesamtübertragungsfunktion lautet entsprechend der Angabe:
+
'''(2)'''&nbsp; The total transfer function is as follows according to the information page:
 
:$$H_{\rm L}(p) = H_{\rm L}^{(1)}(p) \cdot H_{\rm L}^{(2)}(p) =\frac{p^2}{(p+A)^2}
 
:$$H_{\rm L}(p) = H_{\rm L}^{(1)}(p) \cdot H_{\rm L}^{(2)}(p) =\frac{p^2}{(p+A)^2}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
Ein Vergleich mit dem Ergebnis der Teilaufgabe&nbsp; '''(1)'''&nbsp; zeigt, dass&nbsp; $\underline{A = 0.5}$&nbsp; sein muss.
+
A comparison with the result of subtask&nbsp; '''(1)'''&nbsp; shows that&nbsp; $\underline{A = 0.5}$&nbsp; must hold.
  
  
  
'''(3)'''&nbsp; Richtig ist <u>der letzte Lösungsvorschlag</u>:
+
'''(3)'''&nbsp; The <u>last suggested solution</u> is correct:
*Ausgehend von der in der Teilaufgabe&nbsp; '''(1)'''&nbsp; berechneten Gleichung erhält man
+
*The following is obtained based on the equation computed in subtask&nbsp; '''(1)'''&nbsp;:
 
:$$H_{\rm L}(p)  =\frac{p^2}{p^2 + p +0.25}= \frac{p^2 + p +0.25}{p^2 + p
 
:$$H_{\rm L}(p)  =\frac{p^2}{p^2 + p +0.25}= \frac{p^2 + p +0.25}{p^2 + p
 
  +0.25}- \frac{p +0.25}{p^2 + p
 
  +0.25}- \frac{p +0.25}{p^2 + p
Line 109: Line 106:
  
  
'''(4)'''&nbsp; Bezüglich der Funktion &nbsp;$H_{\rm L}'(p)$&nbsp; gilt &nbsp;$Z' = 1$, &nbsp;$N' = 2$&nbsp; und &nbsp;$K' = 1$.  
+
'''(4)'''&nbsp; Concerning the function &nbsp;$H_{\rm L}'(p)$ &nbsp; &rArr; &nbsp; $Z' = 1$, &nbsp;$N' = 2$&nbsp; and &nbsp;$K' = 1$ hold.  
  
Die beiden Pole bei &nbsp;$p_{\rm x} = -0.5$&nbsp; fallen zusammen, so dass nur ein Residium ermittelt werden muss:
+
*The two poles at &nbsp;$p_{\rm x} = -0.5$&nbsp; coincide such that only one residual needs to be determined:
 
:$$h\hspace{0.03cm}'(t) \hspace{0.25cm} =  \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}}
 
:$$h\hspace{0.03cm}'(t) \hspace{0.25cm} =  \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}}
 
  \hspace{0.7cm}\{H_{\rm L}\hspace{-0.05cm}'(p)\cdot {\rm e}^{p t}\}=
 
  \hspace{0.7cm}\{H_{\rm L}\hspace{-0.05cm}'(p)\cdot {\rm e}^{p t}\}=
Line 126: Line 123:
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5}
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
[[File:P_ID1788__LZI_A_3_7_d.png|right|frame|Impulsantwort des Hochpasses (rot); <br>kontinuierlicher Anteil $h\hspace{0.03cm}'(t)$ (blau)]]
+
[[File:P_ID1788__LZI_A_3_7_d.png|right|frame|Impulse response of the high-pass filter including Dirac delta&nbsp; (red); <br>continuous component $h\hspace{0.03cm}'(t)$&nbsp; (blue)]]
Mit der Produktregel der Differentialrechnung erhält man:
+
*The following is obtained using the product rule of differential calculus:
$$h\hspace{0.03cm}'(t) \hspace{0.15cm}  =  \hspace{0.15cm}
+
:$$h\hspace{0.03cm}'(t) \hspace{0.15cm}  =  \hspace{0.15cm}
 
   {\rm e}^{p  \hspace{0.05cm}t} + ( p + 0.25) \cdot t \cdot {\rm e}^{\hspace{0.05cm}p  \hspace{0.05cm}t}
 
   {\rm e}^{p  \hspace{0.05cm}t} + ( p + 0.25) \cdot t \cdot {\rm e}^{\hspace{0.05cm}p  \hspace{0.05cm}t}
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5}  
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5}  
Line 134: Line 131:
 
  \cdot{\rm e}^{-t/2}
 
  \cdot{\rm e}^{-t/2}
 
  \hspace{0.05cm} $$
 
  \hspace{0.05cm} $$
$$\Rightarrow \hspace{0.3cm}h\hspace{0.03cm}'(t = 0) \hspace{0.15cm}  =  \underline{1}\hspace{0.05cm} ,\hspace{0.3cm} h\hspace{0.03cm}'(t = 1) \hspace{0.15cm}  =  \underline {0.455}\hspace{0.05cm} \hspace{0.05cm} ,\hspace{0.3cm}  
+
:$$\Rightarrow \hspace{0.3cm}h\hspace{0.03cm}'(t = 0) \hspace{0.15cm}  =  \underline{1}\hspace{0.05cm} ,\hspace{0.3cm} h\hspace{0.03cm}'(t = 1) \hspace{0.15cm}  =  \underline {0.455}\hspace{0.05cm} \hspace{0.05cm} ,\hspace{0.3cm}  
 
  h\hspace{0.03cm}'(t \rightarrow \infty) \hspace{0.15cm}  =  \underline {= 0}\hspace{0.05cm} .$$
 
  h\hspace{0.03cm}'(t \rightarrow \infty) \hspace{0.15cm}  =  \underline {= 0}\hspace{0.05cm} .$$
Die Grafik zeigt jeweils für nicht&ndash;negative Zeiten
+
 
*als blaue Kurve die Impulsantwort  &nbsp;$h'(t)$&nbsp; des äquivalenten Tiefpasses,
+
The graph shows in each case for non&ndash;negative times
*als rote Kurve die gesamte Impulsantwort des betrachteten Hochpasses:
+
*the impulse response &nbsp;$h'(t)$&nbsp; of the equivalent low-pass filter as a blue curve,
 +
*the total impulse response of the considered high-pass filter as a red curve:
 
:$$h(t) =
 
:$$h(t) =
 
   \delta (t) - (1- {t}/{4})
 
   \delta (t) - (1- {t}/{4})

Latest revision as of 15:21, 25 January 2022

High-pass filter of second-order

We assume the sketched arrangement.  The transfer functions of the two identical high-pass filters are:

$$H_{\rm L}^{(1)}(p) = H_{\rm L}^{(2)}(p) =\frac{p}{p+A} \hspace{0.05cm} .$$

Since the two-port networks are decoupled in terms of resistance by an isolation amplifier,  the total transfer function can be written as follows:

$$H_{\rm L}(p) = H_{\rm L}^{(1)}(p) \cdot H_{\rm L}^{(2)}(p) \hspace{0.05cm} .$$

At the same time it is known that the following equation is valid:

$$H_{\rm L}(p) =\frac{4}{1/p^2 + 4/p +4} \hspace{0.05cm} .$$

If this function is represented in pole–zero notation,  it will turn out that here the number of zeros  $(Z)$  is equal to the number of poles  $(N)$ .  Therefore,  a direct application of the residue theorem is not possible here.

Instead,  in order to compute the time function  $h(t)$  a partial fraction decomposition corresponding to  $H_{\rm L}(p) =1- H_{\rm L}\hspace{-0.05cm}'(p) \hspace{0.05cm}$  must be made.  Thus,  the following holds for the impulse response:

$$h(t) = \delta(t)- h\hspace{0.03cm}'(t) \hspace{0.05cm}.$$

$Z' < N'$  holds with respect to  $H_{\rm L}'(p)$.  Thus,  the continuous component  $h'(t)$  of the impulse response can be determined using the residue theorem.




Please note:

  • The exercise belongs to the chapter  Inverse Laplace Transform.
  • The residual of an  $l$–fold pole  $p_{\rm x}$  within the function  $H_{\rm L}(p)$  is:
$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}} \hspace{0.03cm}\{H_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p t}\}= \frac{1}{(l-1)!}\cdot \frac{{\rm d}^{\hspace{0.05cm}l-1}}{{\rm d}p^{\hspace{0.05cm}l-1}}\hspace{0.15cm} \left \{H_{\rm L}(p)\cdot (p - p_{\rm x})^{\hspace{0.05cm}l} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}} \hspace{0.05cm} .$$
  • The derivative of the product  $y(x) = f(x) \cdot g(x)$  is given as follows:
$$\frac{{\rm d}{\hspace{0.05cm}y(x)}}{{\rm d}\hspace{0.05cm}x}= \frac{{\rm d}{\hspace{0.05cm}f(x)}}{{\rm d}\hspace{0.05cm}x}\cdot g(x) + \frac{{\rm d}{\hspace{0.05cm}g(x)}}{{\rm d}\hspace{0.05cm}x}\cdot f(x) \hspace{0.05cm} .$$


Questions

1

Represent  $H_{\rm L}(p)$  in pole–zero notation.  How many zeros  $(Z)$  and poles  $(N)$  are there?  What is the constant factor  $K$?

$Z \hspace{0.28cm} = \ $

$N \hspace{0.2cm} = \ $

$K \hspace{0.2cm} = \ $

2

What is the parameter $A$  of the two partial two-port networks?

$A \ = \ $

3

Convert  $H_{\rm L}(p) = 1 - H_{\rm L}'(p)$ .  What result is obtained for  $H_{\rm L}'(p)$?

$H_{\rm L}'(p) = p^2/(p+0.5)^2$,
$H_{\rm L}'(p) = p/(p+0.5)^2$,
$H_{\rm L}'(p) = (p+0.25)/(p+0.5)^2$.

4

Compute the time function  $h'(t)$.  What are the numerical values for the given times?

$h'(t = 0) \ = \ $

$h'(t = 1) \ = \ $

$h'(t → ∞)\ = \ $


Solution

(1)  Starting from the given equation,  $H_{\rm L}(p)$  can be transformed as follows:

$$H_{\rm L}(p) =\frac{4}{1/p^2 + 4/p +4}=\frac{p^2}{p^2 + p +1/4}=\frac{p^2}{(p +1/2)^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{ Z = 2\hspace{0.05cm} , \hspace{0.2cm}N = 2\hspace{0.05cm} , \hspace{0.2cm}K = 1} \hspace{0.05cm} .$$


(2)  The total transfer function is as follows according to the information page:

$$H_{\rm L}(p) = H_{\rm L}^{(1)}(p) \cdot H_{\rm L}^{(2)}(p) =\frac{p^2}{(p+A)^2} \hspace{0.05cm} .$$

A comparison with the result of subtask  (1)  shows that  $\underline{A = 0.5}$  must hold.


(3)  The last suggested solution is correct:

  • The following is obtained based on the equation computed in subtask  (1) :
$$H_{\rm L}(p) =\frac{p^2}{p^2 + p +0.25}= \frac{p^2 + p +0.25}{p^2 + p +0.25}- \frac{p +0.25}{p^2 + p +0.25}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = \frac{p +0.25}{p^2 + p +0.25}= \frac{p +0.25}{(p +0.5)^2} \hspace{0.05cm} .$$


(4)  Concerning the function  $H_{\rm L}'(p)$   ⇒   $Z' = 1$,  $N' = 2$  and  $K' = 1$ hold.

  • The two poles at  $p_{\rm x} = -0.5$  coincide such that only one residual needs to be determined:
$$h\hspace{0.03cm}'(t) \hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}} \hspace{0.7cm}\{H_{\rm L}\hspace{-0.05cm}'(p)\cdot {\rm e}^{p t}\}= \frac{\rm d}{{\rm d}p}\hspace{0.15cm} \left \{ \frac{p +0.25}{(p +0.5)^2} \cdot (p +0.5)^2 \cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5} = \hspace{0.2cm}\frac{\rm d}{{\rm d}p}\hspace{0.15cm} \left \{ (p +0.25) \cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5} \hspace{0.05cm} .$$
Impulse response of the high-pass filter including Dirac delta  (red);
continuous component $h\hspace{0.03cm}'(t)$  (blue)
  • The following is obtained using the product rule of differential calculus:
$$h\hspace{0.03cm}'(t) \hspace{0.15cm} = \hspace{0.15cm} {\rm e}^{p \hspace{0.05cm}t} + ( p + 0.25) \cdot t \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5} = \hspace{0.15cm} (1- {t}/{4}) \cdot{\rm e}^{-t/2} \hspace{0.05cm} $$
$$\Rightarrow \hspace{0.3cm}h\hspace{0.03cm}'(t = 0) \hspace{0.15cm} = \underline{1}\hspace{0.05cm} ,\hspace{0.3cm} h\hspace{0.03cm}'(t = 1) \hspace{0.15cm} = \underline {0.455}\hspace{0.05cm} \hspace{0.05cm} ,\hspace{0.3cm} h\hspace{0.03cm}'(t \rightarrow \infty) \hspace{0.15cm} = \underline {= 0}\hspace{0.05cm} .$$

The graph shows in each case for non–negative times

  • the impulse response  $h'(t)$  of the equivalent low-pass filter as a blue curve,
  • the total impulse response of the considered high-pass filter as a red curve:
$$h(t) = \delta (t) - (1- {t}/{4}) \cdot{\rm e}^{-t/2} \hspace{0.05cm}.$$