Difference between revisions of "Aufgaben:Exercise 3.7: Synchronous Demodulator"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=*Buch*/*Kapitel* }} ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type="[]"} - Falsch + Richtig {Input-Box Frage |…“)
 
 
(32 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=*Buch*/*Kapitel*
+
{{quiz-Header|Buchseite=Signal Representation/The Convolution Theorem and Operation
 
}}
 
}}
===Fragebogen===
 
  
<quiz display=simple>
+
[[File:Sig_A_3_7_version2.png|right|frame|The spectral functions&nbsp; $R(f)$&nbsp; and&nbsp; $Z_{\rm E}(f)$]]
{Multiple-Choice Frage
+
 
|type="[]"}
+
To reset an amplitude-modulated signal to the original frequency range, a&nbsp; [[Modulation_Methods/Synchrondemodulation#Blockschaltbild_und_Zeitbereichsdarstellung|"Synchronous Demodulator"]]&nbsp; is often used:
- Falsch
+
*This multiplies the AM input signal&nbsp; $r(t)$&nbsp; with a carrier signal&nbsp; $z_{\rm E}(t)$&nbsp; on the receiver side, which should match the carrier signal&nbsp; $z_{\rm S}(t)$&nbsp; on the transmitter side with regard to both frequency&nbsp; $f_{\rm T}$&nbsp; and phase&nbsp; $\varphi_{\rm T}$.
+ Richtig
+
*This is followed by a rectangular low-pass filter to eliminate all spectral components above the carrier frequency&nbsp; $f_{\rm T}$.&nbsp;  We call the output signal of the synchronous demodulator&nbsp; $v(t)$. 
 +
 
 +
 
 +
The spectrum&nbsp; $R(f)$&nbsp; of the received signal&nbsp; $r(t)$&nbsp; sketched above is produced by&nbsp; "Two-sideband Amplitude Modulation"&nbsp; of a sinusoidal source signal&nbsp; $q(t)$&nbsp; with the frequency&nbsp; $5\,\text{kHz}$&nbsp; and the amplitude&nbsp; $8\,\text{V}$.&nbsp; A cosine signal&nbsp; $z_{\rm S}(t)$&nbsp; with the frequency&nbsp; $30\,\text{kHz}$&nbsp; was used as the transmission-side carrier signal.
 +
 
 +
The spectrum of the carrier signal&nbsp; $z_{\rm E}(t)$&nbsp; on the receiver side consists of two Dirac deltalines according to the sketch below, each with the weight&nbsp; $A/2$.&nbsp; Since&nbsp; $z_{\rm E}(t)$&nbsp; is not to contain a unit, the weights of the Dirac functions are also dimensionless.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the  chapter&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|The Convolution Theorem and Operation]].
 +
*Important information can be found on the page&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Convolution_of_a_function_with_a_Dirac_function|Convolution of a function with a Dirac function]].
 +
 +
 
 +
 
 +
 
  
 +
===Questions===
  
{Input-Box Frage
+
<quiz display=simple>
 +
{Let $f_{\rm T} = 30\,\text{kHz}$&nbsp; and&nbsp; $A=1$.&nbsp; Calculate the output signal&nbsp; $v(t)$. <br>What signal value occurs at time&nbsp; $t = 50\, {\rm  &micro;} \text{s}$?
 
|type="{}"}
 
|type="{}"}
<math> \alpha = </math> { 0.3 _5 }
+
$v(t = 50\, µ\text{s})\ = \ $ { 4 3% } &nbsp;$\text{V}$
  
 +
{How large must the amplitude of the carrier signal&nbsp; $z_{\rm E}(t)$&nbsp; on the receiver side be chosen so that&nbsp; $v(t) = q(t)$&nbsp; is valid?
 +
|type="{}"}
 +
$A\ = \ $ { 2 3% }
  
 +
{Calculate the output signal&nbsp; $v(t)$&nbsp; under the conditions&nbsp; $A = 2$&nbsp; and $f_{\rm T} =  31\,\text{kHz}$. <br>What signal value occurs at time&nbsp; $ t = 50\, µ\text{s}$?
 +
|type="{}"}
 +
$v(t = 50\, µ\text{s})\ = \ $  { 7.608 3% } &nbsp;$\text{V}$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 +
 
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Antwort 1
+
'''(1)'''&nbsp; If we name the signal after the multiplier with&nbsp; $m(t) = r(t) \cdot z_{\rm E}(t)$, the corresponding spectrum&nbsp; $M(f)$&nbsp; is the convolution product of&nbsp; $R(f)$&nbsp; and&nbsp; $Z_{\rm E}(f)$.
 +
*Convolution of the spectrum&nbsp; $R(f)$&nbsp; with the right Dirac delta line at&nbsp; $+30 \text{ kHz}$&nbsp; leads to discrete spectral lines at&nbsp;  $-\hspace{-0.08cm}5\, \text{kHz}$,&nbsp; $+5 \,\text{kHz}$,&nbsp; $+55 \,\text{kHz}$&nbsp; and&nbsp; $+65 \,\text{kHz}$.&nbsp; These are all imaginary and smaller than the impulse weights of&nbsp; $R(f)$&nbsp; by a factor of&nbsp; $A/2 = 0.5$.
 +
*Convolution of&nbsp; $R(f)$&nbsp; with the Dirac at&nbsp; $-\hspace{-0.08cm}30 \,\text{kHz}$&nbsp; yields lines at&nbsp; $-\hspace{-0.08cm}65 \,\text{kHz}$,&nbsp; $-55 \,\text{kHz}$, $-5 \,\text{kHz}$&nbsp; and&nbsp;  $+5 \,\text{kHz}$.
 +
 
 +
 
 +
By superimposing the two intermediate results and taking into account the low-pass filter, which suppresses the lines at&nbsp; $\pm 55 \text{ kHz}$&nbsp; and&nbsp; $\pm 65 \text{ kHz}$&nbsp;, it thus follows for the spectrum of the sink signal:
 +
 +
:$$V( f) =  - {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f - f_{\rm N} }) + {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f + f_{\rm N} } )\hspace{0.3cm}{\rm with}\hspace{0.3cm}f_{\rm N} = 5\;{\rm kHz}.$$
 +
 
 +
*The sink signal&nbsp; $v(t)$&nbsp; is therefore a&nbsp; $5 \text{ kHz}$–sine signal with amplitude&nbsp; $4 \text{ V}$.
 +
*The time&nbsp; $t = 50\, µ\text{s}$&nbsp; corresponds to a quarter of the period&nbsp; $T_0 = 1/f_{\rm N} = 200\, µ\text{s}$.
 +
*Thus the sink signal is maximum here, i.e.&nbsp; $\underline{4 \text{ V}}$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; With&nbsp; $A = 1$&nbsp; the sink signal &nbsp; $v(t)$&nbsp; is only half as large as&nbsp; $q(t)$ &nbsp; &rArr; &nbsp; With&nbsp; $\underline{A = 2}$&nbsp; both signals would be equal.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The Dirac delta lines at&nbsp; $\pm f_{\rm T}$&nbsp; each have weight&nbsp; $1$.&nbsp; All spectral lines mentioned below are imaginary and equal in magnitude to&nbsp; $2 \text{ V}$.
 +
*The convolution of&nbsp; $R(f)$&nbsp; with the right Diracl ine of&nbsp; $z_{\rm E}(t)$&nbsp;  yields components at&nbsp; $-\hspace{-0.08cm}4\, \text{kHz (p: positive)}$,&nbsp;  $+6 \,\text{kHz (n: negative)}$, $+56 \,\text{kHz (p)}$&nbsp; and&nbsp; $+66 \,\text{kHz (n)}$.
 +
*In contrast, the convolution with the left Dirac function leads to spectral lines at&nbsp; $-\hspace{-0.08cm}66 \,\text{kHz (p)}$,&nbsp; $-\hspace{-0.08cm}56 \,\text{kHz (n)}$,&nbsp; $-\hspace{-0.08cm}6 \,\text{kHz (p)}$&nbsp; und&nbsp; $+4 \,\text{kHz (n)}$, all also with the (magnitude-related) impulse weights&nbsp; $2 \text{ V}$.
 +
*Taking the low&ndash;pass into account, there are only the four spectral lines at&nbsp; $\pm 4 \,\text{kHz}$&nbsp; and&nbsp; $\pm 6 \,\text{kHz}$.
 +
*The associated time signal is thus with&nbsp; $f_4 = 4 \,\text{kHz}$&nbsp; and&nbsp; $f_6 = 6 \,\text{kHz}$:
 +
 +
:$$v( t ) = 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_4 t} ) + 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_6 t} ) \ne q( t ) = 8\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_5 t} ).$$
 +
 
 +
*At time&nbsp; $t = 50\, µ\text{s}$&nbsp; one obtains:
 +
 
 +
:$$v( t = 50\, µ\text{s}) = 4\;{\rm{V}} \cdot \big[ {\sin \big ( {0.4{\rm{\pi }}} ) + \sin ( {0.6{\rm{\pi }}} )} \big]\hspace{0.15 cm}\underline{ = 7.608\;{\rm{V}}}{\rm{.}}$$
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^3. Aperiodische Signale - Impulse^]]
+
[[Category:Signal Representation: Exercises|^3.4 The Convolution Theorem^]]

Latest revision as of 15:19, 18 January 2023

The spectral functions  $R(f)$  and  $Z_{\rm E}(f)$

To reset an amplitude-modulated signal to the original frequency range, a  "Synchronous Demodulator"  is often used:

  • This multiplies the AM input signal  $r(t)$  with a carrier signal  $z_{\rm E}(t)$  on the receiver side, which should match the carrier signal  $z_{\rm S}(t)$  on the transmitter side with regard to both frequency  $f_{\rm T}$  and phase  $\varphi_{\rm T}$.
  • This is followed by a rectangular low-pass filter to eliminate all spectral components above the carrier frequency  $f_{\rm T}$.  We call the output signal of the synchronous demodulator  $v(t)$.


The spectrum  $R(f)$  of the received signal  $r(t)$  sketched above is produced by  "Two-sideband Amplitude Modulation"  of a sinusoidal source signal  $q(t)$  with the frequency  $5\,\text{kHz}$  and the amplitude  $8\,\text{V}$.  A cosine signal  $z_{\rm S}(t)$  with the frequency  $30\,\text{kHz}$  was used as the transmission-side carrier signal.

The spectrum of the carrier signal  $z_{\rm E}(t)$  on the receiver side consists of two Dirac deltalines according to the sketch below, each with the weight  $A/2$.  Since  $z_{\rm E}(t)$  is not to contain a unit, the weights of the Dirac functions are also dimensionless.





Hints:



Questions

1

Let $f_{\rm T} = 30\,\text{kHz}$  and  $A=1$.  Calculate the output signal  $v(t)$.
What signal value occurs at time  $t = 50\, {\rm µ} \text{s}$?

$v(t = 50\, µ\text{s})\ = \ $

 $\text{V}$

2

How large must the amplitude of the carrier signal  $z_{\rm E}(t)$  on the receiver side be chosen so that  $v(t) = q(t)$  is valid?

$A\ = \ $

3

Calculate the output signal  $v(t)$  under the conditions  $A = 2$  and $f_{\rm T} = 31\,\text{kHz}$.
What signal value occurs at time  $ t = 50\, µ\text{s}$?

$v(t = 50\, µ\text{s})\ = \ $

 $\text{V}$


Solution

(1)  If we name the signal after the multiplier with  $m(t) = r(t) \cdot z_{\rm E}(t)$, the corresponding spectrum  $M(f)$  is the convolution product of  $R(f)$  and  $Z_{\rm E}(f)$.

  • Convolution of the spectrum  $R(f)$  with the right Dirac delta line at  $+30 \text{ kHz}$  leads to discrete spectral lines at  $-\hspace{-0.08cm}5\, \text{kHz}$,  $+5 \,\text{kHz}$,  $+55 \,\text{kHz}$  and  $+65 \,\text{kHz}$.  These are all imaginary and smaller than the impulse weights of  $R(f)$  by a factor of  $A/2 = 0.5$.
  • Convolution of  $R(f)$  with the Dirac at  $-\hspace{-0.08cm}30 \,\text{kHz}$  yields lines at  $-\hspace{-0.08cm}65 \,\text{kHz}$,  $-55 \,\text{kHz}$, $-5 \,\text{kHz}$  and  $+5 \,\text{kHz}$.


By superimposing the two intermediate results and taking into account the low-pass filter, which suppresses the lines at  $\pm 55 \text{ kHz}$  and  $\pm 65 \text{ kHz}$ , it thus follows for the spectrum of the sink signal:

$$V( f) = - {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f - f_{\rm N} }) + {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f + f_{\rm N} } )\hspace{0.3cm}{\rm with}\hspace{0.3cm}f_{\rm N} = 5\;{\rm kHz}.$$
  • The sink signal  $v(t)$  is therefore a  $5 \text{ kHz}$–sine signal with amplitude  $4 \text{ V}$.
  • The time  $t = 50\, µ\text{s}$  corresponds to a quarter of the period  $T_0 = 1/f_{\rm N} = 200\, µ\text{s}$.
  • Thus the sink signal is maximum here, i.e.  $\underline{4 \text{ V}}$.


(2)  With  $A = 1$  the sink signal   $v(t)$  is only half as large as  $q(t)$   ⇒   With  $\underline{A = 2}$  both signals would be equal.


(3)  The Dirac delta lines at  $\pm f_{\rm T}$  each have weight  $1$.  All spectral lines mentioned below are imaginary and equal in magnitude to  $2 \text{ V}$.

  • The convolution of  $R(f)$  with the right Diracl ine of  $z_{\rm E}(t)$  yields components at  $-\hspace{-0.08cm}4\, \text{kHz (p: positive)}$,  $+6 \,\text{kHz (n: negative)}$, $+56 \,\text{kHz (p)}$  and  $+66 \,\text{kHz (n)}$.
  • In contrast, the convolution with the left Dirac function leads to spectral lines at  $-\hspace{-0.08cm}66 \,\text{kHz (p)}$,  $-\hspace{-0.08cm}56 \,\text{kHz (n)}$,  $-\hspace{-0.08cm}6 \,\text{kHz (p)}$  und  $+4 \,\text{kHz (n)}$, all also with the (magnitude-related) impulse weights  $2 \text{ V}$.
  • Taking the low–pass into account, there are only the four spectral lines at  $\pm 4 \,\text{kHz}$  and  $\pm 6 \,\text{kHz}$.
  • The associated time signal is thus with  $f_4 = 4 \,\text{kHz}$  and  $f_6 = 6 \,\text{kHz}$:
$$v( t ) = 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_4 t} ) + 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_6 t} ) \ne q( t ) = 8\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_5 t} ).$$
  • At time  $t = 50\, µ\text{s}$  one obtains:
$$v( t = 50\, µ\text{s}) = 4\;{\rm{V}} \cdot \big[ {\sin \big ( {0.4{\rm{\pi }}} ) + \sin ( {0.6{\rm{\pi }}} )} \big]\hspace{0.15 cm}\underline{ = 7.608\;{\rm{V}}}{\rm{.}}$$