Difference between revisions of "Aufgaben:Exercise 3.7Z: Regenerator Field Length"

From LNTwww
 
(30 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Digitalsignalübertragung/Lineare Nyquistentzerrung}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Linear_Nyquist_Equalization}}
  
[[File:P_ID1438__Dig_Z_3_7.png|right|frame|Ergebnisse einer Systemsimulation]]
+
[[File:EN_Dig_z_3_7.png|right|frame|Results of a system simulation]]
Per Simulation wurde gezeigt, dass zwischen dem sog. Systemwirkungsgrad $\eta$ sowie der charakteristischen Kabeldämpfung $a_*$ eines Koaxialkabels – beide in dB aufgetragen – etwa ein linearer Zusammenhang besteht, wenn die charakteristische Kabeldämpfung hinreichend groß ist ($a_* ≥ 40 \ \rm dB$):
+
By simulation,  it was shown that there is approximately a linear relationship between the so-called  "system efficiency"   $\eta$  and the  "characteristic cable attenuation"   $a_*$  of a coaxial cable – both plotted in  $\rm dB$  – if the characteristic cable attenuation is sufficiently large  $(a_* ≥ 40 \ \rm dB)$:
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}\eta  \hspace{0.15cm} {\rm (in \hspace{0.15cm}dB)}= A + B \cdot a_{\star}
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}\eta  \hspace{0.15cm} {\rm (in \hspace{0.15cm}dB)}= A + B \cdot a_{\star}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In der Tabelle sind für vier beispielhafte Systemvarianten
+
In the table,  the empirically found coefficients  $A$  and  $B$  are given for four exemplary system variants:
* impulsinterferenzbehaftetes System mit Gaußtiefpass (GTP, siehe Kapitel 3.4) bzw. optimale Nyquistentzerrung (ONE, siehe Kapitel 3.5)
+
* for the intersymbol interference binary system &nbsp;$(M = 2)$&nbsp; with Gaussian low-pass filter &nbsp;$\rm (GLP)$,&nbsp; see chapter&nbsp; <br>[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference|"Error Probability with Intersymbol Interference"]],
* jeweils Binärsystem ($M = 2$) und Oktalsystem ($M = 8$)
+
 +
* for the intersymbol interference octal system &nbsp;$(M = 8)$&nbsp; with Gaussian low-pass filter &nbsp;$\rm (GLP)$,&nbsp; see chapter&nbsp; <br>[[Digital_Signal_Transmission/Intersymbol_Interference_for_Multi-Level_Transmission|"Intersymbol Interference for Multi-Level Transmission"]],
  
 +
*for optimal ISI&ndash;free systems &nbsp;$\rm (ONE)$,&nbsp; see chapter&nbsp; [[Digital_Signal_Transmission/Linear_Nyquist_Equalization|"Linear Nyquist Equalization"]]; &nbsp;$M = 2$&nbsp; and&nbsp; $M = 8$.
  
die empirisch gefundenen Gleichungskoeffizienten $A$ und $B$ angegeben.
 
  
Für einen gegebenen Wert $a_*$ (und damit eine feste Kabellänge) ist ein System um so besser, je größer der Systemwirkungsgrad ist.
+
The larger the system efficiency &nbsp;$\eta$,&nbsp; the better a system is for a given value &nbsp;$a_*$&nbsp; (and thus a fixed cable length).
  
Für die Berecnung der Regeneratorfeldlänge (Abstand zweier Zwischenverstärker) ist zu beachten, dass
+
For the calculation of the&nbsp; '''regenerator field length'''&nbsp; (distance between two repeaters),&nbsp; it should be noted:
* die ungünstigste Fehlerwahrscheinlichkeit nicht größer sein soll als $10^{\rm &ndash;10}$, woraus sich der minimale Sinkenstörabstand ergibt:
+
* The worst-case error probability should not be larger than &nbsp;$10^{-10}$, which results in the minimum sink SNR:
:$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{{\rm min}} \approx 16.1\,{\rm
+
:$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm min} \approx 16.1\,{\rm
 
dB}  \hspace{0.05cm},$$
 
dB}  \hspace{0.05cm},$$
* das logarithmierte Verhältnis von Sendeenergie (pro Bit) und AWGN&ndash;Rauschleistungsdichte ca. $100 \ \rm dB$ beträgt, zum Beispiel:
+
* The logarithmized ratio of transmit energy&nbsp; (per bit)&nbsp; and AWGN noise power density is about &nbsp;$100 \ \rm dB$,&nbsp; for example:
 
:$$s_0 = 3\,{\rm V},\hspace{0.2cm}R_{\rm B} = 1\,{\rm
 
:$$s_0 = 3\,{\rm V},\hspace{0.2cm}R_{\rm B} = 1\,{\rm
 
Gbit/s},\hspace{0.2cm}N_{\rm 0} = 9 \cdot 10^{-19}\,{\rm V^2/Hz}$$
 
Gbit/s},\hspace{0.2cm}N_{\rm 0} = 9 \cdot 10^{-19}\,{\rm V^2/Hz}$$
Line 27: Line 28:
 
\cdot 10^{-9}\,{\rm 1/s}}
 
\cdot 10^{-9}\,{\rm 1/s}}
 
  = 100\,{\rm
 
  = 100\,{\rm
dB}  \hspace{0.05cm},$$
+
dB}  \hspace{0.05cm}.$$
* ein Normalkoaxialkabel mit den Abmessungen $2.6 \ \rm mm$ (innen) und $9.5 \ \rm mm$ (außen) eingesetzt werden soll, bei dem der folgende Zusammenhang gültig ist:
+
* A standard coaxial cable with dimensions &nbsp;$2.6 \ \rm mm$&nbsp; (inside)&nbsp; and &nbsp;$9.5 \ \rm mm$&nbsp; (outside)&nbsp; is to be used,&nbsp; for which the following relationship is valid:
 
:$$a_{\star} =  \frac{2.36\,{\rm dB} } {{\rm km} \cdot \sqrt{{\rm
 
:$$a_{\star} =  \frac{2.36\,{\rm dB} } {{\rm km} \cdot \sqrt{{\rm
 
MHz}}} \cdot l \cdot \sqrt{{R_{\rm B}}/{2}}
 
MHz}}} \cdot l \cdot \sqrt{{R_{\rm B}}/{2}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Hierbei bezeichnet $a_*$ die charakteristische Dämpfung bei der halben Bitrate &ndash; im Beispiel bei $500 \ \rm MHz$ &ndash; und $l$ die Kabellänge.
+
:Here, &nbsp;$a_*$&nbsp; denotes the characteristic attenuation at half the bit rate &ndash; in the example at &nbsp;$500 \ \rm MHz$&nbsp; &ndash; and &nbsp;$l$&nbsp; denotes the cable length.
 +
 
  
''Hinweis:''
+
Note:&nbsp;  The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Linear_Nyquist_Equalization|"Linear Nyquist Equalization"]].
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Lineare_Nyquistentzerrung|Lineare Nyquistentzerrung]].
+
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ The system &nbsp;$({\rm ONE}, \ M = 8)$&nbsp; is best for any &nbsp;$a_*$.&nbsp;
- false
+
- The system &nbsp;$({\rm GLP}, \ M = 2)$&nbsp; is worst for &nbsp;$a_* &#8805; 40 \ \rm dB$.&nbsp;
 +
 
 +
{Starting from which cable attenuation is the system &nbsp;$({\rm GLP}, \ M = 8)$&nbsp; better than the system &nbsp;$({\rm ONE}, \ M = 2)$?
 +
|type="{}"}
 +
$a_{\rm *, \ limit}\ = \ $ { 116 3% } $\ \rm dB$
  
{Input-Box Frage
+
{What is the minimum value &nbsp;$\eta_{\hspace{0.05cm}\rm min}$&nbsp; that the system efficiency must never fall below?
 
|type="{}"}
 
|type="{}"}
$xyz$ = { 5.4 3% } $ab$
+
$10 \cdot {\rm lg} \ \eta_{\hspace{0.05cm}\rm min} \ = \ $ { -86.417--81.383 } $\ \rm dB$
 +
 
 +
{What is the maximum length of the coaxial cable for the system  &nbsp;$({\rm ONE}, \ M = 8)$?&nbsp;
 +
|type="{}"}
 +
$l_{\hspace{0.05cm}\rm max}\ = \ $ { 2.62 3% } $\ \rm km$
 +
 
 +
{What is the maximum length of the coaxial cable for the system &nbsp;$({\rm GTP}, \ M = 2)$?&nbsp;
 +
|type="{}"}
 +
$l_{\hspace{0.05cm}\rm max}\ = \ $ { 1.61 3% } $\ \rm km$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Calculating the system efficiency under the assumption&nbsp; $a_* = 40 \ \rm dB$,&nbsp; we obtain for the four system variants:
'''(2)'''&nbsp;  
+
:$$({\rm GLP},\hspace{0.1cm}M=2) \text{:}\hspace{0.3cm} 10 \cdot {\rm
'''(3)'''&nbsp;  
+
lg}\hspace{0.1cm}\eta
'''(4)'''&nbsp;  
+
= +9.4\,{\rm dB} -1.10 \cdot 40\,{\rm dB} = -34.6\,{\rm dB}\hspace{0.05cm},$$
'''(5)'''&nbsp;  
+
:$$({\rm GLP},\hspace{0.1cm}M=8) \text{:}\hspace{0.3cm}10 \cdot {\rm
 +
lg}\hspace{0.1cm}\eta
 +
= -1.3\,{\rm dB} -0.91 \cdot 40\,{\rm dB} = -37.7\,{\rm dB}\hspace{0.05cm},$$
 +
:$$({\rm ONE},\hspace{0.1cm}M=2) \text{:}\hspace{0.3cm}10 \cdot {\rm
 +
lg}\hspace{0.1cm}\eta
 +
= +4.5\,{\rm dB} -0.96 \cdot 40 \,{\rm dB}= -33.9\,{\rm dB}\hspace{0.05cm},$$
 +
:$$({\rm ONE},\hspace{0.1cm}M=8) \text{:}\hspace{0.3cm} 10 \cdot {\rm
 +
lg}\hspace{0.1cm}\eta = -9.3\,{\rm dB} -0.54 \cdot 40\,{\rm dB} = -30.9\,{\rm
 +
dB}\hspace{0.05cm}.$$
 +
 
 +
From this it follows:
 +
*The&nbsp; <u>first statement</u>&nbsp; is true because the system&nbsp; $({\rm ONE},\hspace{0.1cm} M = 8)$&nbsp; is already best at&nbsp; $40 \ \rm dB$&nbsp; cable attenuation and has the most favorable&nbsp; $\rm B$&nbsp; coefficient.
 +
 
 +
*In contrast,&nbsp; the second statement is false because,&nbsp; for example,&nbsp; at $40 \ \rm dB$ cable attenuation,&nbsp; the octal $\rm GLP$ system is worse than the binary one.
 +
 
 +
 
 +
'''(2)'''&nbsp; As a determination equation,&nbsp; we use here:
 +
:$$-1.3\,{\rm dB} -0.91 \cdot a_{\star} =  +4.5 \,{\rm dB}-0.96 \cdot a_{\star}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} 0.05 \cdot a_{\star} = 5.8\,{\rm dB}
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}a_{\star,\hspace{0.05cm}{\rm limit}} \hspace{0.15cm}\underline {= 116\,{\rm dB}}\hspace{0.05cm}.$$
 +
 
 +
That is:
 +
*Up to the characteristic cable attenuation&nbsp; $a_* = 116 \ \rm dB$&nbsp; $($note:&nbsp; this is an unrealistically large value for currently realized systems$)$,&nbsp; the binary Nyquist system is superior to the system $({\rm GLP},\hspace{0.1cm} M = 8)$.
 +
 +
*Only for larger values than&nbsp; $a_{\rm *, \ limit} = 116 \ \rm dB$&nbsp; does the advantage of the latter&nbsp; $(M = 8$&nbsp; and thus significantly lower symbol rate$)$ outweigh the disadvantage&nbsp; $($octal decision and thus greater weight of intersymbol interference$)$.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The sink SNR should be at least&nbsp; $16.1 \ \rm dB$,&nbsp; which means that it must be valid:
 +
:$$10 \cdot {\rm lg}\hspace{0.1cm}\rho = 10 \cdot {\rm lg}
 +
\hspace{0.1cm}\frac{s_0^2 }{N_0 \cdot R_{\rm B}} + 10 \cdot {\rm
 +
lg}\hspace{0.1cm}\eta  \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg}\hspace{0.1cm}\eta \ >
 +
\ 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm min} - 10 \cdot {\rm
 +
lg}
 +
\hspace{0.1cm}\frac{s_0^2 }{N_0 \cdot R_{\rm B}} =
 +
\ 16.1- 100\hspace{0.15cm}\underline {= -83.9\,{\rm dB} = 10 \cdot {\rm
 +
lg}\hspace{0.1cm}\eta_{\hspace{0.05cm} \rm min}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; For the system considered here: &nbsp; $10 \cdot {\rm lg}\hspace{0.1cm}\eta = -9.3\,{\rm dB} -0.54 \cdot a_{\star}.$
 +
*Thus,&nbsp; from the system efficiency condition &nbsp; &rArr; &nbsp; $10 \cdot {\rm lg} \, \eta > \hspace{0.1cm}&ndash;83.9 \ \rm dB $,&nbsp; the characteristic cable attenuation condition is:
 +
:$$a_{\star} <  \frac{-83.9\,{\rm dB} + 9.3\,{\rm dB}} {-0.54} \approx
 +
138.1\,{\rm dB}  \hspace{0.05cm}.$$
 +
 
 +
*With the given equation
 +
:$$a_{\star} =  \frac{2.36\,{\rm dB} } {{\rm km} \cdot \sqrt{{\rm
 +
MHz}}} \cdot l \cdot \sqrt{{R_{\rm B}}/{2}}
 +
  \hspace{0.05cm}.$$
 +
 
 +
:thus the maximum cable length&nbsp; ("regenerator field length")&nbsp; can be specified:
 +
:$$l_{\rm max} =  \frac{138.1\,{\rm dB} } {2.36\,{\rm dB}/{\rm
 +
km} \cdot \sqrt{\rm MHz})\cdot \sqrt{500\,{\rm MHz}}} \hspace{0.15cm}\underline {\approx 2.62\,
 +
{\rm km}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(5)'''&nbsp; Following the same procedure,&nbsp; but in a more compact notation,&nbsp; results in a smaller&nbsp; "regenerator field length"&nbsp; for this&nbsp; "worse"&nbsp; system:
 +
:$$l_{\rm max} =  \frac{-(83.9\,{\rm dB}+A)/B } {2.36\,{\rm dB}/{\rm
 +
km} \cdot \sqrt{500}} =  \frac{+(83.9+9.4)/1.10 } {2.36\cdot
 +
\sqrt{500}}\hspace{0.1cm}{\rm km}\hspace{0.15cm}\underline {\approx 1.61\, {\rm km}}
 +
\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.5 Lineare Nyquistentzerrung^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.5 Linear Nyquist Equalization^]]

Latest revision as of 16:51, 28 June 2022

Results of a system simulation

By simulation,  it was shown that there is approximately a linear relationship between the so-called  "system efficiency"   $\eta$  and the  "characteristic cable attenuation"   $a_*$  of a coaxial cable – both plotted in  $\rm dB$  – if the characteristic cable attenuation is sufficiently large  $(a_* ≥ 40 \ \rm dB)$:

$$10 \cdot {\rm lg}\hspace{0.1cm}\eta \hspace{0.15cm} {\rm (in \hspace{0.15cm}dB)}= A + B \cdot a_{\star} \hspace{0.05cm}.$$

In the table,  the empirically found coefficients  $A$  and  $B$  are given for four exemplary system variants:


The larger the system efficiency  $\eta$,  the better a system is for a given value  $a_*$  (and thus a fixed cable length).

For the calculation of the  regenerator field length  (distance between two repeaters),  it should be noted:

  • The worst-case error probability should not be larger than  $10^{-10}$, which results in the minimum sink SNR:
$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm min} \approx 16.1\,{\rm dB} \hspace{0.05cm},$$
  • The logarithmized ratio of transmit energy  (per bit)  and AWGN noise power density is about  $100 \ \rm dB$,  for example:
$$s_0 = 3\,{\rm V},\hspace{0.2cm}R_{\rm B} = 1\,{\rm Gbit/s},\hspace{0.2cm}N_{\rm 0} = 9 \cdot 10^{-19}\,{\rm V^2/Hz}$$
$$\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.1cm}\frac{s_0^2 }{N_0 \cdot R_{\rm B}}= 10 \cdot {\rm lg} \hspace{0.1cm} \frac{9\,{\rm V^2} } {9 \cdot 10^{-19}\,{\rm V^2/Hz} \cdot 10^{-9}\,{\rm 1/s}} = 100\,{\rm dB} \hspace{0.05cm}.$$
  • A standard coaxial cable with dimensions  $2.6 \ \rm mm$  (inside)  and  $9.5 \ \rm mm$  (outside)  is to be used,  for which the following relationship is valid:
$$a_{\star} = \frac{2.36\,{\rm dB} } {{\rm km} \cdot \sqrt{{\rm MHz}}} \cdot l \cdot \sqrt{{R_{\rm B}}/{2}} \hspace{0.05cm}.$$
Here,  $a_*$  denotes the characteristic attenuation at half the bit rate – in the example at  $500 \ \rm MHz$  – and  $l$  denotes the cable length.


Note:  The exercise belongs to the chapter  "Linear Nyquist Equalization".



Questions

1

Which of the following statements are true?

The system  $({\rm ONE}, \ M = 8)$  is best for any  $a_*$. 
The system  $({\rm GLP}, \ M = 2)$  is worst for  $a_* ≥ 40 \ \rm dB$. 

2

Starting from which cable attenuation is the system  $({\rm GLP}, \ M = 8)$  better than the system  $({\rm ONE}, \ M = 2)$?

$a_{\rm *, \ limit}\ = \ $

$\ \rm dB$

3

What is the minimum value  $\eta_{\hspace{0.05cm}\rm min}$  that the system efficiency must never fall below?

$10 \cdot {\rm lg} \ \eta_{\hspace{0.05cm}\rm min} \ = \ $

$\ \rm dB$

4

What is the maximum length of the coaxial cable for the system  $({\rm ONE}, \ M = 8)$? 

$l_{\hspace{0.05cm}\rm max}\ = \ $

$\ \rm km$

5

What is the maximum length of the coaxial cable for the system  $({\rm GTP}, \ M = 2)$? 

$l_{\hspace{0.05cm}\rm max}\ = \ $

$\ \rm km$


Solution

(1)  Calculating the system efficiency under the assumption  $a_* = 40 \ \rm dB$,  we obtain for the four system variants:

$$({\rm GLP},\hspace{0.1cm}M=2) \text{:}\hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\eta = +9.4\,{\rm dB} -1.10 \cdot 40\,{\rm dB} = -34.6\,{\rm dB}\hspace{0.05cm},$$
$$({\rm GLP},\hspace{0.1cm}M=8) \text{:}\hspace{0.3cm}10 \cdot {\rm lg}\hspace{0.1cm}\eta = -1.3\,{\rm dB} -0.91 \cdot 40\,{\rm dB} = -37.7\,{\rm dB}\hspace{0.05cm},$$
$$({\rm ONE},\hspace{0.1cm}M=2) \text{:}\hspace{0.3cm}10 \cdot {\rm lg}\hspace{0.1cm}\eta = +4.5\,{\rm dB} -0.96 \cdot 40 \,{\rm dB}= -33.9\,{\rm dB}\hspace{0.05cm},$$
$$({\rm ONE},\hspace{0.1cm}M=8) \text{:}\hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\eta = -9.3\,{\rm dB} -0.54 \cdot 40\,{\rm dB} = -30.9\,{\rm dB}\hspace{0.05cm}.$$

From this it follows:

  • The  first statement  is true because the system  $({\rm ONE},\hspace{0.1cm} M = 8)$  is already best at  $40 \ \rm dB$  cable attenuation and has the most favorable  $\rm B$  coefficient.
  • In contrast,  the second statement is false because,  for example,  at $40 \ \rm dB$ cable attenuation,  the octal $\rm GLP$ system is worse than the binary one.


(2)  As a determination equation,  we use here:

$$-1.3\,{\rm dB} -0.91 \cdot a_{\star} = +4.5 \,{\rm dB}-0.96 \cdot a_{\star}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 0.05 \cdot a_{\star} = 5.8\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}a_{\star,\hspace{0.05cm}{\rm limit}} \hspace{0.15cm}\underline {= 116\,{\rm dB}}\hspace{0.05cm}.$$

That is:

  • Up to the characteristic cable attenuation  $a_* = 116 \ \rm dB$  $($note:  this is an unrealistically large value for currently realized systems$)$,  the binary Nyquist system is superior to the system $({\rm GLP},\hspace{0.1cm} M = 8)$.
  • Only for larger values than  $a_{\rm *, \ limit} = 116 \ \rm dB$  does the advantage of the latter  $(M = 8$  and thus significantly lower symbol rate$)$ outweigh the disadvantage  $($octal decision and thus greater weight of intersymbol interference$)$.


(3)  The sink SNR should be at least  $16.1 \ \rm dB$,  which means that it must be valid:

$$10 \cdot {\rm lg}\hspace{0.1cm}\rho = 10 \cdot {\rm lg} \hspace{0.1cm}\frac{s_0^2 }{N_0 \cdot R_{\rm B}} + 10 \cdot {\rm lg}\hspace{0.1cm}\eta \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg}\hspace{0.1cm}\eta \ > \ 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm min} - 10 \cdot {\rm lg} \hspace{0.1cm}\frac{s_0^2 }{N_0 \cdot R_{\rm B}} = \ 16.1- 100\hspace{0.15cm}\underline {= -83.9\,{\rm dB} = 10 \cdot {\rm lg}\hspace{0.1cm}\eta_{\hspace{0.05cm} \rm min}}\hspace{0.05cm}.$$


(4)  For the system considered here:   $10 \cdot {\rm lg}\hspace{0.1cm}\eta = -9.3\,{\rm dB} -0.54 \cdot a_{\star}.$

  • Thus,  from the system efficiency condition   ⇒   $10 \cdot {\rm lg} \, \eta > \hspace{0.1cm}–83.9 \ \rm dB $,  the characteristic cable attenuation condition is:
$$a_{\star} < \frac{-83.9\,{\rm dB} + 9.3\,{\rm dB}} {-0.54} \approx 138.1\,{\rm dB} \hspace{0.05cm}.$$
  • With the given equation
$$a_{\star} = \frac{2.36\,{\rm dB} } {{\rm km} \cdot \sqrt{{\rm MHz}}} \cdot l \cdot \sqrt{{R_{\rm B}}/{2}} \hspace{0.05cm}.$$
thus the maximum cable length  ("regenerator field length")  can be specified:
$$l_{\rm max} = \frac{138.1\,{\rm dB} } {2.36\,{\rm dB}/{\rm km} \cdot \sqrt{\rm MHz})\cdot \sqrt{500\,{\rm MHz}}} \hspace{0.15cm}\underline {\approx 2.62\, {\rm km}} \hspace{0.05cm}.$$


(5)  Following the same procedure,  but in a more compact notation,  results in a smaller  "regenerator field length"  for this  "worse"  system:

$$l_{\rm max} = \frac{-(83.9\,{\rm dB}+A)/B } {2.36\,{\rm dB}/{\rm km} \cdot \sqrt{500}} = \frac{+(83.9+9.4)/1.10 } {2.36\cdot \sqrt{500}}\hspace{0.1cm}{\rm km}\hspace{0.15cm}\underline {\approx 1.61\, {\rm km}} \hspace{0.05cm}.$$