Difference between revisions of "Aufgaben:Exercise 3.8Z: Circle (Ring) Area"

From LNTwww
m (Guenter verschob die Seite 3.8Z Kreis(ring)fläche nach Aufgabe 3.8: Kreis(ring)fläche)
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Exponentialverteilte Zufallsgrößen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables
 
}}
 
}}
  
[[File:P_ID133__Sto_Z_3_8.png|right|Kreisringfläche]]
+
[[File:P_ID133__Sto_Z_3_8.png|right|frame|About the circular ring area]]
Wir betrachten unterschiedlich große Kreise:  
+
We consider circles of different sizes:  
*Der Radius $r$ und die Fläche $A$ lassen sich als Zufallsgrößen auffassen, die voneinander abhängen.  
+
*The radius  $r$  and the area  $A$  can be thought of as interdependent random variables.  
*Es wird vorausgesetzt, dass der Radius auf den Bereich $6 \le r \le 8$ beschränkt ist.
+
*It is assumed that the radius is restricted to the area  $6 \le r \le 8$  .
  
In der oberen Skizze  ist der Bereich, in dem solche Kreise (alle mit Mittelpunkt im Koordinatenursprung) liegen können, gelb markiert. Weiterhin kann davon ausgegangen werden, dass der Radius in diesem Intervall gleichverteilt ist:
 
$$f_r(r)=\left\{ \begin{array}{*{4}{c}} 0.5 & \rm f\ddot{u}r\hspace{0.2cm}{\rm 6\le \it r \le \rm 8}, \\\rm 0 & \rm sonst. \end{array} \right.$$
 
  
Ab der Teilaufgabe (5) werden schmale Kreisringe mit dem Mittelradius $r$ und der Breite $b$ betrachtet (untere Skizze):
+
In the sketch above,  the area in which such circles  $($all with center at coordinate origin$)$  can lie is marked in yellow.  Furthermore,  it can be assumed that the radius in this interval is uniformly distributed:
*Die Fläche eines solchen Kreisrings wird mit $R$ bezeichnet.  
+
:$$f_r(r)=\left\{ \begin{array}{*{4}{c}} 0.5 & \rm for\hspace{0.2cm}{\rm 6\le \it r \le \rm 8}, \\\rm 0 & \rm else. \end{array} \right.$$
*Die möglichen Mittelradien $r$ seien wieder gleichverteilt zwischen $6$ und $8$, und die Kreisringbreite beträgt $b = 0.1$.
 
  
  
''Hinweise:''  
+
From subtask  '''(5)'''  narrow circular rings with center radius  $r$  and width  $b$  are considered  $($lower sketch$)$:
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen|Exponentialverteilte Zufallsgröße]].
+
*The area of such a circular ring is denoted by  $R$.  
*Insbesondere wird Bezug genommen auf die Seite [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen#Transformation_von_Zufallsgr.C3.B6.C3.9Fen|Transformation von Zufallsgrößen]].
+
*The possible center radii  $r$  are again uniformly distributed between  $6$  and  $8$.
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
*The circular ring width is  $b = 0.1$.
  
  
  
===Fragebogen===
+
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables|Exponentially distributed random variables]].
 +
*In particular, reference is made to the page  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|Transformation of random variables]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die Transformationskennlinie $A = g(r)$ analytisch an. Wie gro&szlig; ist der Minimalwert der Zufallsgr&ouml;&szlig;e $A$?
+
{Give the transformation characteristic curve&nbsp; $A = g(r)$&nbsp; analytically.&nbsp; What is the minimum value of the random variable $A$?
 
|type="{}"}
 
|type="{}"}
$A_\text{min} \ = $ { 113.09 3% }
+
$A_\text{min} \ = \ $ { 113.09 3% }
  
  
{Wie gro&szlig; ist der Maximalwert der Zufallsgr&ouml;&szlig;e $A$?
+
{What is the maximum value of the random variable $A$?
 
|type="{}"}
 
|type="{}"}
$A_\text{max} \ = $ { 201.06 3% }
+
$A_\text{max} \ = \ $ { 201.06 3% }
  
  
{Welcher Wert $m_{ A} = {\rm E}[A]$ ergibt sich f&uuml;r die &bdquo;mittlere&rdquo; Kreisfl&auml;che?
+
{What value&nbsp; $m_{A} = {\rm E}\big[A\big]$&nbsp; results for the&nbsp; "mean"&nbsp; circular area?
 
|type="{}"}
 
|type="{}"}
$m_{ A} \ = $ { 154.98 3% }
+
$m_{ A} \ = \ $ { 154.98 3% }
  
  
{Berechnen Sie die Wahrscheinlichkeitsdichtefunktion der Zufallsgr&ouml;&szlig;e $A$. Wie gro&szlig; ist die Wahrscheinlichkeit, dass die Fl&auml;che $A$ gr&ouml;&szlig;er als $150$ ist?
+
{Calculate the probability density function of the random variable $A$.&nbsp; What is the probability that the area&nbsp; $A> 150$&nbsp;?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(A > 150) \ = $ { 0.545 3% }
+
${\rm Pr}(A > 150) \ = \ $ { 54.5 3% } $\ \%$
  
  
{Welche WDF besitzt die Zufallsgr&ouml;&szlig;e $R$ (Fl&auml;che der Kreisringe gemäß der unteren Skizze)? Wie groß ist deren Minimalwert? Es gelte $b = 0.1$.
+
{What is the PDF of the random variable&nbsp; $R$&nbsp; $($area of the circular rings according to the sketch below$)$?&nbsp; What is its minimum value?&nbsp; Let&nbsp; $b = 0.1$.
 
|type="{}"}
 
|type="{}"}
$b=0.1$: &nbsp; &nbsp; $R_\text{min} \ = $ { 3.77 3% }
+
$R_\text{min} \ = \ $ { 3.77 3% }
  
  
{Welchen Maximalwert besitzt die Zufallsgr&ouml;&szlig;e $R$?
+
{It continues to apply&nbsp; $b = 0.1$.&nbsp; What is the maximum value of the random variable&nbsp; $R$?
 
|type="{}"}
 
|type="{}"}
$b=0.1$: &nbsp; &nbsp; $R_\text{max} \ = $ { 5.03 3% }
+
$R_\text{max} \ = \ $ { 5.03 3% }
  
  
{Wie groß ist der Erwartungswert der Zufallsgröße $R$?
+
{What is the expected value of the random variable&nbsp; $R$&nbsp; for&nbsp; $b = 0.1$?
 
|type="{}"}
 
|type="{}"}
$b=0.1$: &nbsp; &nbsp; ${\rm E}[R] \ = $ { 4.4 3% }
+
${\rm E}\big[R\big] \ = \ $ { 4.4 3% }
 
 
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Gleichung der Kreisfl&auml;che ist gleichzeitig die Transformationskennlinie: $A = \pi \cdot r^2$. Daraus ergibt sich mit $r = 6$ f&uuml;r den Minimalwert: &nbsp; $A_\text{min} \hspace{0.15cm}\underline {= 113.09}$.
+
'''(1)'''&nbsp; The equation of the circular area is at the same time the transformation characteristic: &nbsp; $A = \pi \cdot r^2$.
 +
*From this,&nbsp; with&nbsp; $r = 6$&nbsp; for the minimum value: &nbsp;  
 +
:$$A_\text{min} \hspace{0.15cm}\underline {= 113.09}.$$
  
  
'''(2)'''&nbsp; Entsprechend gilt mit $r = 8$ f&uuml;r den Maximalwert: &nbsp; $A_\text{max} \hspace{0.15cm}\underline {= 201.06}$.
+
'''(2)'''&nbsp; Correspondingly,&nbsp; with&nbsp; $r = 8$&nbsp; for the maximum value: &nbsp;  
 +
:$$A_\text{max} \hspace{0.15cm}\underline {= 201.06}.$$
  
  
'''(3)'''&nbsp; Am einfachsten l&ouml;st man diese Aufgabe wie folgt:
+
'''(3)'''&nbsp; The simplest way to solve this problem is as follows:
$$m_{A}={\rm E}[A]={\rm E}[g(r)]=\int_{ -\infty}^{+\infty}g(r)\cdot f_r(r) {\rm d}r.$$
+
:$$m_{\rm A}={\rm E}\big[A\big]={\rm E}\big[g(r)\big]=\int_{ -\infty}^{+\infty}g(r)\cdot f_r(r) {\rm d}r.$$
  
Mit $g(r) = \pi \cdot r^2$ und $f_r(r) = 1/2$ im Bereich von $6$ ... $8$ erh&auml;lt man:
+
*With&nbsp; $g(r) = \pi \cdot r^2$&nbsp; and&nbsp; $f_r(r) = 1/2$&nbsp; in the range of&nbsp; $6$ ... $8$&nbsp; obtains:
$$m_{A}=\int_{\rm 6}^{\rm 8}1/2 \cdot\pi\cdot r^{\rm 2}\, {\rm d} \it r=\frac{\pi}{\rm 6}\cdot \rm ( 8^3-6^3)
+
:$$m_{\rm A}=\int_{\rm 6}^{\rm 8}1/2 \cdot\pi\cdot r^{\rm 2}\, {\rm d} \it r=\frac{\pi}{\rm 6}\cdot \rm ( 8^3-6^3)
 
\hspace{0.15cm}\underline{=\rm 154.98}.$$
 
\hspace{0.15cm}\underline{=\rm 154.98}.$$
  
  
'''(4)'''&nbsp; Die WDF der transformierten Zufallsgr&ouml;&szlig;e $A$ lautet:
+
'''(4)'''&nbsp; The PDF of the transformed random variable&nbsp; $A$&nbsp; is:
$$f_A(A)=\frac{f_r(r)}{|g'(r)|}\Bigg|_{r=h(y) = \sqrt{A/ \pi }}.$$
+
:$$f_A(A)=\frac{f_r(r)}{|g\hspace{0.05cm}'(r)|}\Bigg|_{r=h(y) = \sqrt{A/ \pi }}.$$
 +
 
 +
*In the range between&nbsp; $A_\text{min} {= 113.09}$&nbsp; and&nbsp; $A_\text{max} {= 201.06}$&nbsp; then holds:
 +
:$$f_A(A)=\frac{\rm 1/2}{\rm 2\cdot \pi\cdot\it r}\Bigg|_{\it r=\sqrt{\it A/\rm \pi}}=\frac{\rm 1}{\rm 4\cdot\sqrt{\it A\cdot\rm \pi}}.$$
  
Im Bereich zwischen $A_\text{min} {= 113.09}$ und $A_\text{max} {= 201.06}$ gilt dann:
+
*The probability we are looking for is obtained by integration:
$$f_A(A)=\frac{\rm 1/2}{\rm 2\cdot \pi\cdot\it r}\Bigg|_{\it r=\sqrt{\it A/\rm \pi}}=\frac{\rm 1}{\rm 4\cdot\sqrt{\it A\cdot\rm \pi}}.$$
+
:$${\rm Pr}(A> 150)=\int_{\rm 150}^{\it A_{\rm max}}\frac{\rm 1}{\rm 4\cdot\sqrt{\it A\cdot\rm \pi}} \; \rm d \it A= \frac{\rm 2\cdot\sqrt{\it A}}{\rm 4\cdot\sqrt{\pi}}\Big|_{\rm 150}^{\it A_{\rm max}}.$$
  
Die gesuchte Wahrscheinlichkeit erh&auml;lt man durch Integration:  
+
*The upper limit of integration yields the value&nbsp; $4$&nbsp; and the lower limit&nbsp; $3.455$.&nbsp; This yields the probability we are looking for:  
$${\rm Pr}(A> 150)=\int_{\rm 150}^{\it A_{\rm max}}\frac{\rm 1}{\rm 4\cdot\sqrt{\it A\cdot\rm \pi}} \; \rm d \it A= \frac{\rm 2\cdot\sqrt{\it A}}{\rm 4\cdot\sqrt{\pi}}\Big|_{\rm 150}^{\it A_{\rm max}}.$$
+
:$${\rm Pr}(A> 150) \hspace{0.15cm}\underline {=54.5\%}.$$
  
Die obere Integrationsgrenze liefert den Wert $4$ und die untere Grenze $3.455$. Daraus ergibt sich die gesuchte Wahrscheinlichkeit ${\rm Pr}(A> 150) \hspace{0.15cm}\underline {=0.545}$.
 
  
 +
'''(5)'''&nbsp; For the circular ring area&nbsp; $R$&nbsp; holds for a given radius&nbsp; $r$:
 +
:$$R=\left (r+{b}/{\rm 2} \right)^{\rm 2}\cdot \rm\pi-\left ({\it r}-{\it b}/{\rm 2} \right)^{\rm 2}\cdot \rm\pi= \rm2\cdot\pi\cdot\it r \cdot b.$$
  
'''(5)'''&nbsp; F&uuml;r die Kreisringfl&auml;che $R$ gilt bei gegebenem Radius $r$:
+
*There is thus a linear relationship between&nbsp; $R$&nbsp; and&nbsp; $r$&nbsp; .
$$R=\left (r+{b}/{\rm 2} \right)^{\rm 2}\cdot \rm\pi-\left ({\it r}-{\it b}/{\rm 2} \right)^{\rm 2}\cdot \rm\pi= \rm2\cdot\pi\cdot\it r \cdot b.$$
+
*That is:&nbsp; $R$&nbsp; is also uniformly distributed independently of the width&nbsp; $b$&nbsp; as long as&nbsp; $b \ll r$.
 +
*For the minimum value holds:
 +
:$$R_{\rm min}=\rm 2\pi\cdot 6\cdot 0.1\hspace{0.15cm}\underline{\approx3.77}. $$
  
Zwischen $R$ und $r$ besteht also ein linearer Zusammenhang. Das heißt, $R$ ist ebenfalls gleichverteilt und zwar unabh&auml;ngig von der Breite $b$, solange $b \ll r$ ist. F&uuml;r den Minimalwert gilt:
 
$$R_{\rm min}=\rm 2\pi\cdot 6\cdot 0.1\hspace{0.15cm}\underline{\approx3.77}. $$
 
  
'''(6)'''&nbsp; Entsprechend ist der Maximalwert:
+
'''(6)'''&nbsp; Accordingly,&nbsp; the maximum value is:
$$R_{\rm max}=\rm 2\pi\cdot 8\cdot 0.1\hspace{0.15cm}\underline{\approx 5.03}.$$
+
:$$R_{\rm max}=\rm 2\pi\cdot 8\cdot 0.1\hspace{0.15cm}\underline{\approx 5.03}.$$
  
'''(7)'''&nbsp; Aufgrund des linearen Zusammenhangs zwischen $R$ und  $r$ führt der mittlere Radius $r = 7$  auch zur mittleren Kreisringfl&auml;che:
 
$${\rm E}[R]=\rm 2\pi\cdot 7\cdot 0.1\hspace{0.15cm}\underline{\approx 4.4}.$$
 
  
 +
'''(7)'''&nbsp; Due to the linear relationship between&nbsp; $R$&nbsp; and&nbsp; $r$&nbsp; the mean radius&nbsp; $r = 7$&nbsp; also leads to the mean circular ring area:
 +
:$${\rm E}\big[R\big]=\rm 2\pi\cdot 7\cdot 0.1\hspace{0.15cm}\underline{\approx 4.4}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^3.6 Exponentialverteilte Zufallsgrößen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^3.6 Exponentially Distributed Random Variables^]]

Latest revision as of 16:03, 2 February 2022

About the circular ring area

We consider circles of different sizes:

  • The radius  $r$  and the area  $A$  can be thought of as interdependent random variables.
  • It is assumed that the radius is restricted to the area  $6 \le r \le 8$  .


In the sketch above,  the area in which such circles  $($all with center at coordinate origin$)$  can lie is marked in yellow.  Furthermore,  it can be assumed that the radius in this interval is uniformly distributed:

$$f_r(r)=\left\{ \begin{array}{*{4}{c}} 0.5 & \rm for\hspace{0.2cm}{\rm 6\le \it r \le \rm 8}, \\\rm 0 & \rm else. \end{array} \right.$$


From subtask  (5)  narrow circular rings with center radius  $r$  and width  $b$  are considered  $($lower sketch$)$:

  • The area of such a circular ring is denoted by  $R$.
  • The possible center radii  $r$  are again uniformly distributed between  $6$  and  $8$.
  • The circular ring width is  $b = 0.1$.



Hints:



Questions

1

Give the transformation characteristic curve  $A = g(r)$  analytically.  What is the minimum value of the random variable $A$?

$A_\text{min} \ = \ $

2

What is the maximum value of the random variable $A$?

$A_\text{max} \ = \ $

3

What value  $m_{A} = {\rm E}\big[A\big]$  results for the  "mean"  circular area?

$m_{ A} \ = \ $

4

Calculate the probability density function of the random variable $A$.  What is the probability that the area  $A> 150$ ?

${\rm Pr}(A > 150) \ = \ $

$\ \%$

5

What is the PDF of the random variable  $R$  $($area of the circular rings according to the sketch below$)$?  What is its minimum value?  Let  $b = 0.1$.

$R_\text{min} \ = \ $

6

It continues to apply  $b = 0.1$.  What is the maximum value of the random variable  $R$?

$R_\text{max} \ = \ $

7

What is the expected value of the random variable  $R$  for  $b = 0.1$?

${\rm E}\big[R\big] \ = \ $


Solution

(1)  The equation of the circular area is at the same time the transformation characteristic:   $A = \pi \cdot r^2$.

  • From this,  with  $r = 6$  for the minimum value:  
$$A_\text{min} \hspace{0.15cm}\underline {= 113.09}.$$


(2)  Correspondingly,  with  $r = 8$  for the maximum value:  

$$A_\text{max} \hspace{0.15cm}\underline {= 201.06}.$$


(3)  The simplest way to solve this problem is as follows:

$$m_{\rm A}={\rm E}\big[A\big]={\rm E}\big[g(r)\big]=\int_{ -\infty}^{+\infty}g(r)\cdot f_r(r) {\rm d}r.$$
  • With  $g(r) = \pi \cdot r^2$  and  $f_r(r) = 1/2$  in the range of  $6$ ... $8$  obtains:
$$m_{\rm A}=\int_{\rm 6}^{\rm 8}1/2 \cdot\pi\cdot r^{\rm 2}\, {\rm d} \it r=\frac{\pi}{\rm 6}\cdot \rm ( 8^3-6^3) \hspace{0.15cm}\underline{=\rm 154.98}.$$


(4)  The PDF of the transformed random variable  $A$  is:

$$f_A(A)=\frac{f_r(r)}{|g\hspace{0.05cm}'(r)|}\Bigg|_{r=h(y) = \sqrt{A/ \pi }}.$$
  • In the range between  $A_\text{min} {= 113.09}$  and  $A_\text{max} {= 201.06}$  then holds:
$$f_A(A)=\frac{\rm 1/2}{\rm 2\cdot \pi\cdot\it r}\Bigg|_{\it r=\sqrt{\it A/\rm \pi}}=\frac{\rm 1}{\rm 4\cdot\sqrt{\it A\cdot\rm \pi}}.$$
  • The probability we are looking for is obtained by integration:
$${\rm Pr}(A> 150)=\int_{\rm 150}^{\it A_{\rm max}}\frac{\rm 1}{\rm 4\cdot\sqrt{\it A\cdot\rm \pi}} \; \rm d \it A= \frac{\rm 2\cdot\sqrt{\it A}}{\rm 4\cdot\sqrt{\pi}}\Big|_{\rm 150}^{\it A_{\rm max}}.$$
  • The upper limit of integration yields the value  $4$  and the lower limit  $3.455$.  This yields the probability we are looking for:
$${\rm Pr}(A> 150) \hspace{0.15cm}\underline {=54.5\%}.$$


(5)  For the circular ring area  $R$  holds for a given radius  $r$:

$$R=\left (r+{b}/{\rm 2} \right)^{\rm 2}\cdot \rm\pi-\left ({\it r}-{\it b}/{\rm 2} \right)^{\rm 2}\cdot \rm\pi= \rm2\cdot\pi\cdot\it r \cdot b.$$
  • There is thus a linear relationship between  $R$  and  $r$  .
  • That is:  $R$  is also uniformly distributed independently of the width  $b$  as long as  $b \ll r$.
  • For the minimum value holds:
$$R_{\rm min}=\rm 2\pi\cdot 6\cdot 0.1\hspace{0.15cm}\underline{\approx3.77}. $$


(6)  Accordingly,  the maximum value is:

$$R_{\rm max}=\rm 2\pi\cdot 8\cdot 0.1\hspace{0.15cm}\underline{\approx 5.03}.$$


(7)  Due to the linear relationship between  $R$  and  $r$  the mean radius  $r = 7$  also leads to the mean circular ring area:

$${\rm E}\big[R\big]=\rm 2\pi\cdot 7\cdot 0.1\hspace{0.15cm}\underline{\approx 4.4}.$$