Difference between revisions of "Aufgaben:Exercise 3.8Z: Circle (Ring) Area"

From LNTwww
 
(2 intermediate revisions by 2 users not shown)
Line 9: Line 9:
  
  
In the sketch above, the area in which such circles  (all with center at coordinate origin)  can lie is marked in yellow. Furthermore, it can be assumed that the radius in this interval is equally distributed:
+
In the sketch above,  the area in which such circles  $($all with center at coordinate origin$)$  can lie is marked in yellow.  Furthermore,  it can be assumed that the radius in this interval is uniformly distributed:
:$$f_r(r)=\left\{ \begin{array}{*{4}{c}} 0.5 & \rm for\hspace{0.2cm}{\rm 6\le \it r \le \rm 8}, \rm 0 & \rm else. \end{array} \right.$$
+
:$$f_r(r)=\left\{ \begin{array}{*{4}{c}} 0.5 & \rm for\hspace{0.2cm}{\rm 6\le \it r \le \rm 8}, \\\rm 0 & \rm else. \end{array} \right.$$
  
  
From subtask  '''(5)'''  narrow circular rings with center radius  $r$  and width  $b$  are considered (lower sketch):  
+
From subtask  '''(5)'''  narrow circular rings with center radius  $r$  and width  $b$  are considered  $($lower sketch$)$:  
*The area of such a circular ring is denoted by  $R$ .  
+
*The area of such a circular ring is denoted by  $R$.  
*The possible center radii  $r$  are again equally distributed between  $6$  and  $8$.
+
*The possible center radii  $r$  are again uniformly distributed between  $6$  and  $8$.
 
*The circular ring width is  $b = 0.1$.
 
*The circular ring width is  $b = 0.1$.
 
 
 
  
  
Line 26: Line 23:
  
 
Hints:  
 
Hints:  
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables]].
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables|Exponentially distributed random variables]].
 
*In particular, reference is made to the page  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|Transformation of random variables]].
 
*In particular, reference is made to the page  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|Transformation of random variables]].
 
   
 
   
Line 35: Line 32:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Give the transformation characteristic curve&nbsp; $A = g(r)$&nbsp; analytically.&nbsp; What is the minimum value of the random variable&nbsp; $A$?
+
{Give the transformation characteristic curve&nbsp; $A = g(r)$&nbsp; analytically.&nbsp; What is the minimum value of the random variable $A$?
 
|type="{}"}
 
|type="{}"}
 
$A_\text{min} \ = \ $ { 113.09 3% }
 
$A_\text{min} \ = \ $ { 113.09 3% }
  
  
{what is the maximum value of the random variable of $A$?
+
{What is the maximum value of the random variable $A$?
 
|type="{}"}
 
|type="{}"}
 
$A_\text{max} \ = \ $ { 201.06 3% }
 
$A_\text{max} \ = \ $ { 201.06 3% }
  
  
{What value&nbsp; $m_{ A} = {\rm E}\big[A\big]$&nbsp; results for the "mean" circular area?
+
{What value&nbsp; $m_{A} = {\rm E}\big[A\big]$&nbsp; results for the&nbsp; "mean"&nbsp; circular area?
 
|type="{}"}
 
|type="{}"}
 
$m_{ A} \ = \ $ { 154.98 3% }
 
$m_{ A} \ = \ $ { 154.98 3% }
  
  
{Calculate the probability density function of the random variable&nbsp; $A$.&nbsp; What is the probability that the area&nbsp; $A> 150$&nbsp;?
+
{Calculate the probability density function of the random variable $A$.&nbsp; What is the probability that the area&nbsp; $A> 150$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(A > 150) \ = \ $ { 54.5 3% } $\ \%$
 
${\rm Pr}(A > 150) \ = \ $ { 54.5 3% } $\ \%$
  
  
{What is the PDF of the random variable&nbsp; $R$&nbsp; (area of the circular rings according to the sketch below)?&nbsp; What is its minimum value?&nbsp; Let&nbsp; $b = 0.1$.
+
{What is the PDF of the random variable&nbsp; $R$&nbsp; $($area of the circular rings according to the sketch below$)$?&nbsp; What is its minimum value?&nbsp; Let&nbsp; $b = 0.1$.
 
|type="{}"}
 
|type="{}"}
 
$R_\text{min} \ = \ $ { 3.77 3% }
 
$R_\text{min} \ = \ $ { 3.77 3% }
  
  
{It continues to apply&nbsp; $b = 0.1$. What is the maximum value of the random variable&nbsp; $R$?
+
{It continues to apply&nbsp; $b = 0.1$.&nbsp; What is the maximum value of the random variable&nbsp; $R$?
 
|type="{}"}
 
|type="{}"}
 
$R_\text{max} \ = \ $ { 5.03 3% }
 
$R_\text{max} \ = \ $ { 5.03 3% }
Line 74: Line 71:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; The equation of the circular area is at the same time the transformation characteristic: &nbsp; $A = \pi \cdot r^2$.
 
'''(1)'''&nbsp; The equation of the circular area is at the same time the transformation characteristic: &nbsp; $A = \pi \cdot r^2$.
*From this, with&nbsp; $r = 6$&nbsp; for the minimum value: &nbsp;  
+
*From this,&nbsp; with&nbsp; $r = 6$&nbsp; for the minimum value: &nbsp;  
 
:$$A_\text{min} \hspace{0.15cm}\underline {= 113.09}.$$
 
:$$A_\text{min} \hspace{0.15cm}\underline {= 113.09}.$$
  
  
'''(2)'''&nbsp; Correspondingly, with&nbsp; $r = 8$&nbsp; for the maximum value: &nbsp;  
+
'''(2)'''&nbsp; Correspondingly,&nbsp; with&nbsp; $r = 8$&nbsp; for the maximum value: &nbsp;  
 
:$$A_\text{max} \hspace{0.15cm}\underline {= 201.06}.$$
 
:$$A_\text{max} \hspace{0.15cm}\underline {= 201.06}.$$
  
Line 90: Line 87:
  
  
'''(4)'''&nbsp; The PDF of the transformed randomgr&ouml;&transform;e&nbsp; $A$&nbsp; is:
+
'''(4)'''&nbsp; The PDF of the transformed random variable&nbsp; $A$&nbsp; is:
 
:$$f_A(A)=\frac{f_r(r)}{|g\hspace{0.05cm}'(r)|}\Bigg|_{r=h(y) = \sqrt{A/ \pi }}.$$
 
:$$f_A(A)=\frac{f_r(r)}{|g\hspace{0.05cm}'(r)|}\Bigg|_{r=h(y) = \sqrt{A/ \pi }}.$$
  
Line 107: Line 104:
  
 
*There is thus a linear relationship between&nbsp; $R$&nbsp; and&nbsp; $r$&nbsp; .  
 
*There is thus a linear relationship between&nbsp; $R$&nbsp; and&nbsp; $r$&nbsp; .  
*That is:&nbsp; $R$&nbsp; is also uniformly distributed independently of the width&nbsp; $b$ as long as&nbsp; $b \ll r$&nbsp;.  
+
*That is:&nbsp; $R$&nbsp; is also uniformly distributed independently of the width&nbsp; $b$&nbsp; as long as&nbsp; $b \ll r$.  
 
*For the minimum value holds:
 
*For the minimum value holds:
 
:$$R_{\rm min}=\rm 2\pi\cdot 6\cdot 0.1\hspace{0.15cm}\underline{\approx3.77}. $$
 
:$$R_{\rm min}=\rm 2\pi\cdot 6\cdot 0.1\hspace{0.15cm}\underline{\approx3.77}. $$
  
  
'''(6)'''&nbsp; Accordingly, the maximum value is:
+
'''(6)'''&nbsp; Accordingly,&nbsp; the maximum value is:
 
:$$R_{\rm max}=\rm 2\pi\cdot 8\cdot 0.1\hspace{0.15cm}\underline{\approx 5.03}.$$
 
:$$R_{\rm max}=\rm 2\pi\cdot 8\cdot 0.1\hspace{0.15cm}\underline{\approx 5.03}.$$
  

Latest revision as of 16:03, 2 February 2022

About the circular ring area

We consider circles of different sizes:

  • The radius  $r$  and the area  $A$  can be thought of as interdependent random variables.
  • It is assumed that the radius is restricted to the area  $6 \le r \le 8$  .


In the sketch above,  the area in which such circles  $($all with center at coordinate origin$)$  can lie is marked in yellow.  Furthermore,  it can be assumed that the radius in this interval is uniformly distributed:

$$f_r(r)=\left\{ \begin{array}{*{4}{c}} 0.5 & \rm for\hspace{0.2cm}{\rm 6\le \it r \le \rm 8}, \\\rm 0 & \rm else. \end{array} \right.$$


From subtask  (5)  narrow circular rings with center radius  $r$  and width  $b$  are considered  $($lower sketch$)$:

  • The area of such a circular ring is denoted by  $R$.
  • The possible center radii  $r$  are again uniformly distributed between  $6$  and  $8$.
  • The circular ring width is  $b = 0.1$.



Hints:



Questions

1

Give the transformation characteristic curve  $A = g(r)$  analytically.  What is the minimum value of the random variable $A$?

$A_\text{min} \ = \ $

2

What is the maximum value of the random variable $A$?

$A_\text{max} \ = \ $

3

What value  $m_{A} = {\rm E}\big[A\big]$  results for the  "mean"  circular area?

$m_{ A} \ = \ $

4

Calculate the probability density function of the random variable $A$.  What is the probability that the area  $A> 150$ ?

${\rm Pr}(A > 150) \ = \ $

$\ \%$

5

What is the PDF of the random variable  $R$  $($area of the circular rings according to the sketch below$)$?  What is its minimum value?  Let  $b = 0.1$.

$R_\text{min} \ = \ $

6

It continues to apply  $b = 0.1$.  What is the maximum value of the random variable  $R$?

$R_\text{max} \ = \ $

7

What is the expected value of the random variable  $R$  for  $b = 0.1$?

${\rm E}\big[R\big] \ = \ $


Solution

(1)  The equation of the circular area is at the same time the transformation characteristic:   $A = \pi \cdot r^2$.

  • From this,  with  $r = 6$  for the minimum value:  
$$A_\text{min} \hspace{0.15cm}\underline {= 113.09}.$$


(2)  Correspondingly,  with  $r = 8$  for the maximum value:  

$$A_\text{max} \hspace{0.15cm}\underline {= 201.06}.$$


(3)  The simplest way to solve this problem is as follows:

$$m_{\rm A}={\rm E}\big[A\big]={\rm E}\big[g(r)\big]=\int_{ -\infty}^{+\infty}g(r)\cdot f_r(r) {\rm d}r.$$
  • With  $g(r) = \pi \cdot r^2$  and  $f_r(r) = 1/2$  in the range of  $6$ ... $8$  obtains:
$$m_{\rm A}=\int_{\rm 6}^{\rm 8}1/2 \cdot\pi\cdot r^{\rm 2}\, {\rm d} \it r=\frac{\pi}{\rm 6}\cdot \rm ( 8^3-6^3) \hspace{0.15cm}\underline{=\rm 154.98}.$$


(4)  The PDF of the transformed random variable  $A$  is:

$$f_A(A)=\frac{f_r(r)}{|g\hspace{0.05cm}'(r)|}\Bigg|_{r=h(y) = \sqrt{A/ \pi }}.$$
  • In the range between  $A_\text{min} {= 113.09}$  and  $A_\text{max} {= 201.06}$  then holds:
$$f_A(A)=\frac{\rm 1/2}{\rm 2\cdot \pi\cdot\it r}\Bigg|_{\it r=\sqrt{\it A/\rm \pi}}=\frac{\rm 1}{\rm 4\cdot\sqrt{\it A\cdot\rm \pi}}.$$
  • The probability we are looking for is obtained by integration:
$${\rm Pr}(A> 150)=\int_{\rm 150}^{\it A_{\rm max}}\frac{\rm 1}{\rm 4\cdot\sqrt{\it A\cdot\rm \pi}} \; \rm d \it A= \frac{\rm 2\cdot\sqrt{\it A}}{\rm 4\cdot\sqrt{\pi}}\Big|_{\rm 150}^{\it A_{\rm max}}.$$
  • The upper limit of integration yields the value  $4$  and the lower limit  $3.455$.  This yields the probability we are looking for:
$${\rm Pr}(A> 150) \hspace{0.15cm}\underline {=54.5\%}.$$


(5)  For the circular ring area  $R$  holds for a given radius  $r$:

$$R=\left (r+{b}/{\rm 2} \right)^{\rm 2}\cdot \rm\pi-\left ({\it r}-{\it b}/{\rm 2} \right)^{\rm 2}\cdot \rm\pi= \rm2\cdot\pi\cdot\it r \cdot b.$$
  • There is thus a linear relationship between  $R$  and  $r$  .
  • That is:  $R$  is also uniformly distributed independently of the width  $b$  as long as  $b \ll r$.
  • For the minimum value holds:
$$R_{\rm min}=\rm 2\pi\cdot 6\cdot 0.1\hspace{0.15cm}\underline{\approx3.77}. $$


(6)  Accordingly,  the maximum value is:

$$R_{\rm max}=\rm 2\pi\cdot 8\cdot 0.1\hspace{0.15cm}\underline{\approx 5.03}.$$


(7)  Due to the linear relationship between  $R$  and  $r$  the mean radius  $r = 7$  also leads to the mean circular ring area:

$${\rm E}\big[R\big]=\rm 2\pi\cdot 7\cdot 0.1\hspace{0.15cm}\underline{\approx 4.4}.$$