Difference between revisions of "Aufgaben:Exercise 3.8Z: Convolution of Two Rectangles"

From LNTwww
m (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Faltungssatz und Faltungsoperation
+
{{quiz-Header|Buchseite=Signal Representation/The Convolution Theorem and Operation
 
}}
 
}}
  
[[File:P_ID535__Sig_Z_3_8.png|right|frame|Zur Faltung zweier Rechtecke]]
+
[[File:P_ID535__Sig_Z_3_8.png|right|frame|The convolution of two rectangles  $x(t)$  and  $h(t)$
Am Eingang eines kausalen LZI-Systems (also linear und zeitinvariant) mit einer rechteckförmigen Impulsantwort ${h(t)}$ der Dauer $2 \,\text{ms}$ liegt ein Rechteckimpuls ${x(t)}$ der Dauer $T = 3 \,\text{ms}$ und der Amplitude $A = 2\,\text{ V}$ an. Die beiden Rechteckfunktionen beginnen jeweils zum Zeitpunkt $t = 0$.
+
]]
 +
At the input of a causal LTI system (i.e. linear and time-invariant)  
 +
*with a rectangular impulse response  ${h(t)}$  of duration  $2 \,\text{ms}$ ,
 +
*a rectangular pulse  ${x(t)}$  of duration  $T = 3 \,\text{ms}$  and amplitude  $A = 2\,\text{ V}$  is applied. 
  
In dieser Aufgabe sollen Sie das Ausgangssignal ${y(t)}$ mit Hilfe der grafischen Faltung berechnen. Wie man leicht nachprüfen kann, ist das Ausgangssignal ${y(t)}$
 
*nur im Bereich von $0$ bis $5 \, \text{ms}$ von Null verschieden,
 
*symmetrisch zum Zeitpunkt $t = 2.5 \text{ms}$.
 
  
 +
The rectangular functions each start at the time  $t = 0$.
  
 +
In this task you are to calculate the output signal  ${y(t)}$  with the help of the "Graphical Convolution". 
  
 +
As you can easily check, the output signal  ${y(t)}$
 +
*differs from zero only in the range between  $0$  and  $5 \, \text{ms}$,  and
 +
*is symmetrical at the time  $t = 2.5 \, \text{ms}$.
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Faltungssatz_und_Faltungsoperation|Faltungssatz und Faltungsoperation]].
 
*Sie bezieht sich vorwiegend auf die Seite [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Grafische_Faltung|Grafische Faltung]]
 
*Die Thematik dieses Abschnitts wird auch im interaktiven Applet [[Applets:Graphische_Faltung|Zur Verdeutlichung der grafischen Faltung]] veranschaulicht.
 
 
  
  
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/The_Convolution_Theorem_and_Operation|"The Convolution Theorem and Operation"]].
 +
*It mainly refers to the page  [[Signal_Representation/The_Convolution_Theorem_and_Operation#Graphical_convolution|"Graphical convolution"]].
 +
*The topic of this section is also illustrated in the interactive applet  [[Applets:Graphical_Convolution| "Graphical Convolution"]].
  
===Fragebogen===
+
 
 +
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Signalwerte zu den Zeitpunkten $t = 1 \,\text{ms}$ und $t = 2 \,\text{ms}$.
+
{Calculate the signal values at the times &nbsp; $t = 1 \,\text{ms}$&nbsp; and&nbsp; $t = 2 \,\text{ms}$.
 
|type="{}"}
 
|type="{}"}
 
$y(t = 1 \,\text{ms})\ = \ $ { 0.6 3% } &nbsp;$\text{V}$
 
$y(t = 1 \,\text{ms})\ = \ $ { 0.6 3% } &nbsp;$\text{V}$
Line 31: Line 38:
  
  
{Bestimmen Sie die Signalwerte für die Zeitpunkte $t = 3 \,\text{ms}$ und $t = 4 \,\text{ms}$ durch Ausnutzung der angegebenen Symmetrieeigenschaften.
+
{Determine the signal values for the times&nbsp; $t = 3 \,\text{ms}$&nbsp; and&nbsp; $t = 4 \,\text{ms}$&nbsp; by exploiting the symmetry properties.
 
|type="{}"}
 
|type="{}"}
 
$y(t = 3 \,\text{ms})\ = \ $ { 1.2 3% } &nbsp;$\text{V}$
 
$y(t = 3 \,\text{ms})\ = \ $ { 1.2 3% } &nbsp;$\text{V}$
Line 37: Line 44:
  
  
{Welche der folgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ Das Ausgangssignal ${y(t)}$ hat einen trapezförmigen Verlauf.
+
+ The output signal&nbsp; ${y(t)}$&nbsp; has a trapezoidal shape.
- Das Spektrum lautet: ${Y(f)} = Y_0 \cdot \text{si}^{2}(\pi f T)$.
+
- The spectrum is &nbsp; ${Y(f)} = Y_0 \cdot \text{si}^{2}(\pi f T)$.
+ Mit $T = 2 \,\text{ms}$ würde sich eine Dreiecksform ergeben.
+
+ With&nbsp; $T = 2 \,\text{ms}$,&nbsp; a triangular shape would result.
  
  
Line 47: Line 54:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID536__Sig_Z_3_8_a_neu.png|right|frame|Zur Verdeutlichung der grafischen Faltung $x(t) \star h(t)$]]
+
[[File:P_ID536__Sig_Z_3_8_a_neu.png|right|frame|To illustrate the convolution&nbsp; $x(t) \star h(t)$;<br>the abscissas  have been renamed:&nbsp; $\tau$]]
'''(1)'''&nbsp;  Allgemein gilt für das Faltungsintegral:
+
'''(1)'''&nbsp;  In general, the following applies to the convolution integral:
 
:$$y(t) = \int_{ - \infty }^{ + \infty } {x( \tau  ) \cdot h( {t - \tau } )}\hspace{0.1cm} {\rm d}\tau.$$
 
:$$y(t) = \int_{ - \infty }^{ + \infty } {x( \tau  ) \cdot h( {t - \tau } )}\hspace{0.1cm} {\rm d}\tau.$$
''Hinweis:'' Die Abszissen in nebenstehender Grafik wurden zu $\tau$ umbenannt.
 
  
Der Signalwert zum Zeitpunkt $t = 1 \,\text{ms}$ kann wie folgt berechnet werden:
+
The signal value at time&nbsp; $t = 1 \,\text{ms}$&nbsp; can be calculated as follows:
*Spiegelung der Impulsantwort ${h(\tau)}$,  
+
*Mirroring of the impulse response&nbsp; ${h(\tau)}$,  
*Verschiebung um $t = 1 \text{ms}$ nach rechts (violette Kurve in der Skizze),  
+
*shifting by&nbsp; $t = 1 \text{ ms}$&nbsp; to the right (violet curve in the sketch),
*Multiplikation der beiden Funktionen sowie Integration.  
+
*multiplication of the two functions and integration.  
  
  
Das Produkt ist ebenfalls rechteckförmig mit der Höhe $2 \text{V} \cdot 300 \; \text{1/s}$ und der Breite $1 \,\text{ms}$. Daraus ergibt sich für die Fläche:
+
The product is also rectangular with the height&nbsp; $2 \text{ V} \cdot 300 \; \text{1/s}$&nbsp; and width&nbsp; $1 \,\text{ms}$. This results for the area:
 
:$$y( {t = 1\;{\rm{ms}}} ) \hspace{0.15 cm}\underline{= 0.6\;{\rm{V}}}{\rm{.}}$$
 
:$$y( {t = 1\;{\rm{ms}}} ) \hspace{0.15 cm}\underline{= 0.6\;{\rm{V}}}{\rm{.}}$$
Das grüne Rechteck verdeutlicht die Berechnung des zweiten Signalwertes. Nun ist das resultierende Rechteck nach der Multiplikation doppelt so breit und man erhält:
+
The green rectangle illustrates the calculation of the second signal value.&nbsp; Now the resulting rectangle is twice as wide after the multiplication and we get:
 
:$$y( {t = 2\;{\rm{ms}}} ) = 2\;{\rm{V}} \cdot {\rm{300}}\;{1}/{{\rm{s}}} \cdot 2\;{\rm{ms}}\hspace{0.15 cm}\underline{={\rm{1.2}}\;{\rm{V}}}{\rm{.}}$$
 
:$$y( {t = 2\;{\rm{ms}}} ) = 2\;{\rm{V}} \cdot {\rm{300}}\;{1}/{{\rm{s}}} \cdot 2\;{\rm{ms}}\hspace{0.15 cm}\underline{={\rm{1.2}}\;{\rm{V}}}{\rm{.}}$$
  
  
'''(2)'''&nbsp; Wegen der Symmetrie von ${y(t)}$ bezüglich des Zeitpunktes $t = 2.5\, \text {ms}$ gilt:
+
'''(2)'''&nbsp; Because of the symmetry of&nbsp; ${y(t)}$&nbsp; with respect to the time&nbsp; $t = 2.5\, \text {ms}$&nbsp; holds:
 
:$$y( {t = 3\;{\rm{ms}}} ) = y( {t = 2\;{\rm{ms}}} ) \hspace{0.15 cm}\underline{= {\rm{1}}{\rm{.2}}\;{\rm{V}}}{\rm{,}}$$
 
:$$y( {t = 3\;{\rm{ms}}} ) = y( {t = 2\;{\rm{ms}}} ) \hspace{0.15 cm}\underline{= {\rm{1}}{\rm{.2}}\;{\rm{V}}}{\rm{,}}$$
 
:$$y( {t = 4\;{\rm{ms}}} ) = y( {t = 1\;{\rm{ms}}} )\hspace{0.15 cm}\underline{ = 0.6\;{\rm{V}}}{\rm{.}}$$
 
:$$y( {t = 4\;{\rm{ms}}} ) = y( {t = 1\;{\rm{ms}}} )\hspace{0.15 cm}\underline{ = 0.6\;{\rm{V}}}{\rm{.}}$$
  
  
[[File:P_ID537__Sig_Z_3_8_c.png|right|frame|Faltungsergebnis $y(t)$]]
+
[[File:P_ID537__Sig_Z_3_8_c.png|right|frame|Overall result&nbsp; $y(t)$]]
'''(3)'''&nbsp;  In den Teilaufgaben (1) und (2) wurden die Signalwerte zu diskreten Zeitpunkten berechnet. Alle Punkte sind durch Geradenstücke zu verbinden, da die Integration über Rechteckfunktionen wachsender Breite einen linearen Verlauf ergibt. Das heißt: Das Ausgangssignal ${y(t)}$ ist trapezförmig.
+
'''(3)'''&nbsp;  Proposed solutions <u>1 and 3</u> are correct:
 +
*In subtasks&nbsp; '''(1)'''&nbsp; and&nbsp; '''(2)'''&nbsp; the signal values were calculated at discrete time points.
 +
*All points are to be connected by straight line segments, since the integration over rectangular functions of increasing width results in a linear course.  
 +
*This means:&nbsp; The output signal&nbsp; ${y(t)}$&nbsp; is trapezoidal.
  
Das dazugehörige Spektrum ist komplex und lautet:
+
*The associated spectrum is complex and reads:
 
:$$Y(f) = 6 \cdot 10^{ - 3} \;{{\rm{V}}}/{{{\rm{Hz}}}} \cdot {\mathop{\rm si}\nolimits} ( {2\;{\rm{ms}}\cdot{\rm{\pi }}f} ) \cdot {\mathop{\rm si}\nolimits} ( {3\;{\rm{ms}}\cdot{\rm{\pi }}f}) \cdot {\rm{e}}^{ - {\rm{j \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \hspace{0.05cm}\cdot \hspace{0.05cm}2.5\;{\rm{ms}}\hspace{0.05cm}\cdot \hspace{0.05cm} \pi }}f} .$$
 
:$$Y(f) = 6 \cdot 10^{ - 3} \;{{\rm{V}}}/{{{\rm{Hz}}}} \cdot {\mathop{\rm si}\nolimits} ( {2\;{\rm{ms}}\cdot{\rm{\pi }}f} ) \cdot {\mathop{\rm si}\nolimits} ( {3\;{\rm{ms}}\cdot{\rm{\pi }}f}) \cdot {\rm{e}}^{ - {\rm{j \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \hspace{0.05cm}\cdot \hspace{0.05cm}2.5\;{\rm{ms}}\hspace{0.05cm}\cdot \hspace{0.05cm} \pi }}f} .$$
*Hätte der Eingangsimpuls ${x(t)}$ die Dauer $T = 2\, \text {ms}$, so würde ${y(t)}$ einen dreieckförmigen Signalverlauf zwischen ${t = 0}$ und $t = 4 \, \text {ms}$ zeigen.  
+
*If the input pulse&nbsp; ${x(t)}$&nbsp; would have the duration&nbsp; $T = 2\, \text {ms}$, the duration&nbsp; ${y(t)}$&nbsp; would show a triangular waveform between&nbsp; ${t = 0}$&nbsp; and&nbsp; $t = 4 \text { ms}$.&nbsp; The maximum&nbsp; $1.2 \, \text {V}$&nbsp; would then only result at the time&nbsp; $t = 2 \, \text {ms}$.  
*Das Maximum $1.2 \, \text {V}$ ergäbe sich dann nur zum Zeitpunkt $t = 2 \, \text {ms}$.  
+
 
  
  
Richtig sind somit die Lösungsvorschläge <u>1 und 3</u>.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^3. Aperiodische Signale - Impulse^]]
+
[[Category:Signal Representation: Exercises|^3.4 The Convolution Theorem^]]

Latest revision as of 14:56, 24 May 2021

The convolution of two rectangles  $x(t)$  and  $h(t)$

At the input of a causal LTI system (i.e. linear and time-invariant)

  • with a rectangular impulse response  ${h(t)}$  of duration  $2 \,\text{ms}$ ,
  • a rectangular pulse  ${x(t)}$  of duration  $T = 3 \,\text{ms}$  and amplitude  $A = 2\,\text{ V}$  is applied. 


The rectangular functions each start at the time  $t = 0$.

In this task you are to calculate the output signal  ${y(t)}$  with the help of the "Graphical Convolution". 

As you can easily check, the output signal  ${y(t)}$

  • differs from zero only in the range between  $0$  and  $5 \, \text{ms}$,  and
  • is symmetrical at the time  $t = 2.5 \, \text{ms}$.



Hints:



Questions

1

Calculate the signal values at the times   $t = 1 \,\text{ms}$  and  $t = 2 \,\text{ms}$.

$y(t = 1 \,\text{ms})\ = \ $

 $\text{V}$
$y(t = 2 \,\text{ms})\ = \ $

 $\text{V}$

2

Determine the signal values for the times  $t = 3 \,\text{ms}$  and  $t = 4 \,\text{ms}$  by exploiting the symmetry properties.

$y(t = 3 \,\text{ms})\ = \ $

 $\text{V}$
$y(t = 4 \,\text{ms})\ = \ $

 $\text{V}$

3

Which of the following statements are true?

The output signal  ${y(t)}$  has a trapezoidal shape.
The spectrum is   ${Y(f)} = Y_0 \cdot \text{si}^{2}(\pi f T)$.
With  $T = 2 \,\text{ms}$,  a triangular shape would result.


Solution

To illustrate the convolution  $x(t) \star h(t)$;
the abscissas have been renamed:  $\tau$

(1)  In general, the following applies to the convolution integral:

$$y(t) = \int_{ - \infty }^{ + \infty } {x( \tau ) \cdot h( {t - \tau } )}\hspace{0.1cm} {\rm d}\tau.$$

The signal value at time  $t = 1 \,\text{ms}$  can be calculated as follows:

  • Mirroring of the impulse response  ${h(\tau)}$,
  • shifting by  $t = 1 \text{ ms}$  to the right (violet curve in the sketch),
  • multiplication of the two functions and integration.


The product is also rectangular with the height  $2 \text{ V} \cdot 300 \; \text{1/s}$  and width  $1 \,\text{ms}$. This results for the area:

$$y( {t = 1\;{\rm{ms}}} ) \hspace{0.15 cm}\underline{= 0.6\;{\rm{V}}}{\rm{.}}$$

The green rectangle illustrates the calculation of the second signal value.  Now the resulting rectangle is twice as wide after the multiplication and we get:

$$y( {t = 2\;{\rm{ms}}} ) = 2\;{\rm{V}} \cdot {\rm{300}}\;{1}/{{\rm{s}}} \cdot 2\;{\rm{ms}}\hspace{0.15 cm}\underline{={\rm{1.2}}\;{\rm{V}}}{\rm{.}}$$


(2)  Because of the symmetry of  ${y(t)}$  with respect to the time  $t = 2.5\, \text {ms}$  holds:

$$y( {t = 3\;{\rm{ms}}} ) = y( {t = 2\;{\rm{ms}}} ) \hspace{0.15 cm}\underline{= {\rm{1}}{\rm{.2}}\;{\rm{V}}}{\rm{,}}$$
$$y( {t = 4\;{\rm{ms}}} ) = y( {t = 1\;{\rm{ms}}} )\hspace{0.15 cm}\underline{ = 0.6\;{\rm{V}}}{\rm{.}}$$


Overall result  $y(t)$

(3)  Proposed solutions 1 and 3 are correct:

  • In subtasks  (1)  and  (2)  the signal values were calculated at discrete time points.
  • All points are to be connected by straight line segments, since the integration over rectangular functions of increasing width results in a linear course.
  • This means:  The output signal  ${y(t)}$  is trapezoidal.
  • The associated spectrum is complex and reads:
$$Y(f) = 6 \cdot 10^{ - 3} \;{{\rm{V}}}/{{{\rm{Hz}}}} \cdot {\mathop{\rm si}\nolimits} ( {2\;{\rm{ms}}\cdot{\rm{\pi }}f} ) \cdot {\mathop{\rm si}\nolimits} ( {3\;{\rm{ms}}\cdot{\rm{\pi }}f}) \cdot {\rm{e}}^{ - {\rm{j \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \hspace{0.05cm}\cdot \hspace{0.05cm}2.5\;{\rm{ms}}\hspace{0.05cm}\cdot \hspace{0.05cm} \pi }}f} .$$
  • If the input pulse  ${x(t)}$  would have the duration  $T = 2\, \text {ms}$, the duration  ${y(t)}$  would show a triangular waveform between  ${t = 0}$  and  $t = 4 \text { ms}$.  The maximum  $1.2 \, \text {V}$  would then only result at the time  $t = 2 \, \text {ms}$.