Difference between revisions of "Aufgaben:Exercise 3.9: Convolution of Rectangle and Gaussian Pulse"

From LNTwww
Line 42: Line 42:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das Signal&nbsp; $y_1(t) = x_1(t) \ast h(t)$. <br>Welche Werte ergeben sich zu den Zeiten $t = 0$ und $t = 20\,\text{ns}$  mit der Näherung $(2\pi )^{1/2} \approx 2.5$?
+
{Calculate the signa&nbsp; $y_1(t) = x_1(t) \ast h(t)$. <br>What values result at times $t = 0$ und $t = 20\,\text{ns}$  with the approximation $(2\pi )^{1/2} \approx 2.5$?
 
|type="{}"}
 
|type="{}"}
 
$y_1(t=0)\ = \ $ { 0.682 3% } &nbsp;$\text{V}$
 
$y_1(t=0)\ = \ $ { 0.682 3% } &nbsp;$\text{V}$
 
$y_1(t=20\,\text{ns})\ = \ $  { 0.158 3% } &nbsp;$\text{V}$
 
$y_1(t=20\,\text{ns})\ = \ $  { 0.158 3% } &nbsp;$\text{V}$
  
{Welche Signalwerte ergeben sich beim Ausgangssignal&nbsp; $y_2(t) = x_2(t) \ast h(t)$ zu den betrachteten Zeitpunkten?
+
{What are the signal values of the output signal&nbsp; $y_2(t) = x_2(t) \ast h(t)$ at the points in time considered?
 
|type="{}"}
 
|type="{}"}
 
$y_2(t=0)\ = \ $ { 0.8 3% } &nbsp;$\text{V}$
 
$y_2(t=0)\ = \ $ { 0.8 3% } &nbsp;$\text{V}$
 
$y_2(t=20 \,\text{ns})\ = \ $ { 0.11 3% } &nbsp;$\text{V}$
 
$y_2(t=20 \,\text{ns})\ = \ $ { 0.11 3% } &nbsp;$\text{V}$
  
{Wie groß ist das Ausgangssignal&nbsp; $y_3(t) = x_3(t) \ast h(t)$&nbsp; zu den betrachteten Zeitpunkten? Interpretieren Sie das Ergebnis.
+
{What is the magnitude of the output signa&nbsp; $y_3(t) = x_3(t) \ast h(t)$&nbsp; at the points in time considered? Interpret the result.
 
|type="{}"}
 
|type="{}"}
 
$y_3(t=0)\ = \ $ { 0.8 3% } &nbsp;$\text{V}$
 
$y_3(t=0)\ = \ $ { 0.8 3% } &nbsp;$\text{V}$
Line 61: Line 61:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Das Faltungsintegral lautet hier:
+
'''(1)'''&nbsp;  The convolution integral here is:
  
 
:$$y_1( t ) = A_1  \cdot \Delta f \cdot \int_{t - T_1 /2}^{t + T_1 /2} {{\rm{e}}^{{\rm{ - \pi }}( {\Delta f \hspace{0.05cm}\cdot \hspace{0.05cm} \tau } )^2 } }\hspace{0.1cm} {\rm{d}}\tau  = \frac{A_1 }{\sqrt{2\pi }} \cdot\int_{u_1 }^{u_2 } {{\rm{e}}^{ - u^2 /2}\hspace{0.1cm}  {\rm{d}}u.}$$
 
:$$y_1( t ) = A_1  \cdot \Delta f \cdot \int_{t - T_1 /2}^{t + T_1 /2} {{\rm{e}}^{{\rm{ - \pi }}( {\Delta f \hspace{0.05cm}\cdot \hspace{0.05cm} \tau } )^2 } }\hspace{0.1cm} {\rm{d}}\tau  = \frac{A_1 }{\sqrt{2\pi }} \cdot\int_{u_1 }^{u_2 } {{\rm{e}}^{ - u^2 /2}\hspace{0.1cm}  {\rm{d}}u.}$$
 
   
 
   
*Hierbei wurde die Substitution&nbsp; $u = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \tau$&nbsp; verwendet. Die Integrationsgrenzen liegen bei:
+
*Here the substitution&nbsp; $u = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \tau$&nbsp; was used. The integration limits are at:
 
   
 
   
 
:$$u_1  = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \big( {t - T_1 /2} \big),\hspace{0.5cm}u_2  = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \big( {t + T_1 /2} \big).$$
 
:$$u_1  = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \big( {t - T_1 /2} \big),\hspace{0.5cm}u_2  = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \big( {t + T_1 /2} \big).$$
  
*Mit dem komplementären Gaußschen Fehlerintegral kann hierfür auch geschrieben werden:
+
*Using the complementary Gaussian error integral, it is also possible to write for this:
 
   
 
   
 
:$$y_1 (t) = A_1  \cdot \big[ {{\rm Q} ( {u_1 } ) - {\rm Q}( {u_2 } )} \big].$$
 
:$$y_1 (t) = A_1  \cdot \big[ {{\rm Q} ( {u_1 } ) - {\rm Q}( {u_2 } )} \big].$$
  
*Für den Zeitpunkt&nbsp; $t = 0$&nbsp; erhält man mit&nbsp; $(2\pi )^{1/2} \approx 2.5$:
+
*For time&nbsp; $t = 0$&nbsp; one obtains with&nbsp; $(2\pi )^{1/2} \approx 2.5$:
 
   
 
   
 
:$$u_2  = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \frac{ {T_1 }}{2} \approx 2.5 \cdot 4 \cdot 10^{7} \;{\rm{1/s}} \cdot 10^{-8} \;{\rm{s}} = 1.$$
 
:$$u_2  = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \frac{ {T_1 }}{2} \approx 2.5 \cdot 4 \cdot 10^{7} \;{\rm{1/s}} \cdot 10^{-8} \;{\rm{s}} = 1.$$
  
*Mit&nbsp; $u_1 = -u_2 = -1$&nbsp; folgt für die beiden gesuchten Signalwerte:
+
*With&nbsp; $u_1 = -u_2 = -1$&nbsp;, it follows for the two signal values we are looking for:
 
   
 
   
 
:$$y_1 ( {t = 0} ) \approx A_1  \cdot \big[ {{\rm Q}( { - 1} ) - {\rm Q}(+ 1 )} \big] = 1\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.841 - 0}}{\rm{.159}}} \big] \hspace{0.15 cm}\underline{= 0.682\;{\rm{V}}}{\rm{,}}$$
 
:$$y_1 ( {t = 0} ) \approx A_1  \cdot \big[ {{\rm Q}( { - 1} ) - {\rm Q}(+ 1 )} \big] = 1\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.841 - 0}}{\rm{.159}}} \big] \hspace{0.15 cm}\underline{= 0.682\;{\rm{V}}}{\rm{,}}$$
Line 85: Line 85:
  
  
'''(2)'''&nbsp; Analog zur ersten Musterlösung erhält man für den schmaleren Eingangsimpuls&nbsp; $x_2(t)$:
+
'''(2)'''&nbsp; Analogous to the first sample solution, one obtains&nbsp; $x_2(t)$ for the narrower input pulse:
 
   
 
   
 
:$$y_2 ( {t = 0} ) \approx A_2  \cdot \big[ {{\rm Q}( { - 0.1} ) - {\rm Q}( {0.1} )} \big] = 10\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.540 - 0}}{\rm{.460}}} \big] \hspace{0.15 cm}\underline{= 0.80\;{\rm{V}}}{\rm{,}}$$
 
:$$y_2 ( {t = 0} ) \approx A_2  \cdot \big[ {{\rm Q}( { - 0.1} ) - {\rm Q}( {0.1} )} \big] = 10\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.540 - 0}}{\rm{.460}}} \big] \hspace{0.15 cm}\underline{= 0.80\;{\rm{V}}}{\rm{,}}$$

Revision as of 23:39, 28 January 2021

Rechteckförmiges  $x(t)$  und gaußförmiges  $h(t)$

We consider a Gaussian low pass with the equivalent bandwidth  $\Delta f = 40 \,\text{MHz}$:

$$H( f ) = {\rm{e}}^{{\rm{ - \pi }}( {f/\Delta f} )^2 } .$$

The corresponding impulse response is:

$$h( t ) = \Delta f \cdot {\rm{e}}^{{\rm{ - \pi }}( {\Delta f \hspace{0.05cm} \cdot \hspace{0.05cm} t} )^2 } .$$

From the sketch it can be seen that the equivalent time duration   ⇒   $\Delta t = 1/\Delta f = 25\,\text{ns}$  the impulse response  $h(t)$  can be read at the two inflection points of the Gaussian function.

Three different pulse-like signals are now applied to the input of the low-pass filter:

  • a square-wave pulse  $x_1(t)$  with amplitude  $A_1 =1\,\text{V}$  and duration  $T_1 = 20\,\text{ns}$  (red curve),
  • a rectangular pulse  $x_2(t)$  with amplitude  $A_2 =10\,\text{V}$  and duration  $T_2 = 2\,\text{ns}$  (violet curve),
  • a Dirac pulse  $x_3(t)$  with pulse weight  $2 \cdot 10^{–8}\text{ Vs}$  (green arrow).




Hints:

  • To answer the questions, you can use the complementary Gaussian error integral, which is defined as follows:
Some values of the Q-function
$${\rm Q}( x ) = \frac{1}{ {\sqrt {2{\rm{\pi }}} }}\int_{\it x}^\infty {{\rm{e}}^{{{ - {\it u}}}^{\rm{2}} {\rm{/2}}} }\hspace{0.1cm}{\rm{d}}{\it u}.$$


This table gives some function values.



Questions

1

Calculate the signa  $y_1(t) = x_1(t) \ast h(t)$.
What values result at times $t = 0$ und $t = 20\,\text{ns}$ with the approximation $(2\pi )^{1/2} \approx 2.5$?

$y_1(t=0)\ = \ $

 $\text{V}$
$y_1(t=20\,\text{ns})\ = \ $

 $\text{V}$

2

What are the signal values of the output signal  $y_2(t) = x_2(t) \ast h(t)$ at the points in time considered?

$y_2(t=0)\ = \ $

 $\text{V}$
$y_2(t=20 \,\text{ns})\ = \ $

 $\text{V}$

3

What is the magnitude of the output signa  $y_3(t) = x_3(t) \ast h(t)$  at the points in time considered? Interpret the result.

$y_3(t=0)\ = \ $

 $\text{V}$
$y_3(t=20\, \text{ns})\ = \ $

 $\text{V}$


Solution

(1)  The convolution integral here is:

$$y_1( t ) = A_1 \cdot \Delta f \cdot \int_{t - T_1 /2}^{t + T_1 /2} {{\rm{e}}^{{\rm{ - \pi }}( {\Delta f \hspace{0.05cm}\cdot \hspace{0.05cm} \tau } )^2 } }\hspace{0.1cm} {\rm{d}}\tau = \frac{A_1 }{\sqrt{2\pi }} \cdot\int_{u_1 }^{u_2 } {{\rm{e}}^{ - u^2 /2}\hspace{0.1cm} {\rm{d}}u.}$$
  • Here the substitution  $u = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \tau$  was used. The integration limits are at:
$$u_1 = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \big( {t - T_1 /2} \big),\hspace{0.5cm}u_2 = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \big( {t + T_1 /2} \big).$$
  • Using the complementary Gaussian error integral, it is also possible to write for this:
$$y_1 (t) = A_1 \cdot \big[ {{\rm Q} ( {u_1 } ) - {\rm Q}( {u_2 } )} \big].$$
  • For time  $t = 0$  one obtains with  $(2\pi )^{1/2} \approx 2.5$:
$$u_2 = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \frac{ {T_1 }}{2} \approx 2.5 \cdot 4 \cdot 10^{7} \;{\rm{1/s}} \cdot 10^{-8} \;{\rm{s}} = 1.$$
  • With  $u_1 = -u_2 = -1$ , it follows for the two signal values we are looking for:
$$y_1 ( {t = 0} ) \approx A_1 \cdot \big[ {{\rm Q}( { - 1} ) - {\rm Q}(+ 1 )} \big] = 1\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.841 - 0}}{\rm{.159}}} \big] \hspace{0.15 cm}\underline{= 0.682\;{\rm{V}}}{\rm{,}}$$
$$y_1 ( {t = 20\;{\rm{ns}}} ) \approx A_1 \cdot \big[ {{\rm Q}( 1 ) - {\rm Q}( 3 )} \big] = 1\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.159 - 0}}{\rm{.001}}} \big] \hspace{0.15 cm}\underline{= 0.158\;{\rm{V}}}{\rm{.}}$$


(2)  Analogous to the first sample solution, one obtains  $x_2(t)$ for the narrower input pulse:

$$y_2 ( {t = 0} ) \approx A_2 \cdot \big[ {{\rm Q}( { - 0.1} ) - {\rm Q}( {0.1} )} \big] = 10\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.540 - 0}}{\rm{.460}}} \big] \hspace{0.15 cm}\underline{= 0.80\;{\rm{V}}}{\rm{,}}$$
$$y_2 ( {t = 20\,{\rm ns}} ) \approx A_2 \cdot \big[ {{\rm Q}( {1.9} ) - {\rm Q}( {2.1} )} \big] = 10\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.029 - 0}}{\rm{.018}}} \big] \hspace{0.15 cm}\underline{= 0.11\;{\rm{V}}}{\rm{.}}$$


(3)  Beim diracförmigen Eingangssignal  $x_3(t)$  ist das Ausgangssignal  $y_3(t)$  gleich der Impulsantwort  $h(t)$, gewichtet mit dem Gewicht der Diracfunktion:

$$y_3 (t) = 2 \cdot 10^{ - 8} \,{\rm{Vs}} \cdot 4 \cdot 10^7 \;{\rm{1/s}} \cdot {\rm{e}}^{ - {\rm{\pi }}( {\Delta f \cdot t})^2 }.$$
  • Zum Zeitpunkt  $t = 0$  erhält man auch hier mit guter Näherung  $y_3( t=0)\hspace{0.15 cm}\underline{ =0.8\, {\rm V}}$.
  • Nach  $20\, \rm ns$  ist der Ausgangsimpuls um den Faktor  ${\rm e}^{–0.64π} \hspace{0.15 cm}\underline{\approx 0.136}$  kleiner und man erhält  $y_3( t = 20 \,\text{ns}) ≈ 0.11 \,\text{V}$.


Man erkennt aus dem Vergleich der Resultate aus  (2)  und   (3), dass  $y_3(t)$ ≈ $y_2(t)$  gilt.

  • Der Grund hierfür ist, dass der Diracimpuls eine gute Näherung für einen rechteckförmigen Eingangsimpuls gleicher Fläche ist, wenn die Rechteckdauer  $T$  deutlich kleiner als die äquivalente Impulsdauer  $\Delta t$  der Impulsantwort ist.
  • Das heißt für unser Beispiel:  Ist die Dauer  $T$  des rechteckförmigen Eingangsimpulses  $x(t)$  deutlich kleiner als die äquivalente Dauer  $\Delta t$  der gaußförmigen Impulsantwort  $h(t)$, dann ist auch der Ausgangsimpuls  $y(t)$  nahezu gaußförmig. Aber:   Gauß (einmal) gefaltet mit Nicht–Gauß ergibt nie (exakt) Gauß!