Difference between revisions of "Aufgaben:Exercise 4.07: Decision Boundaries once again"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Digitalsignalübertragung/Approximation der Fehlerwahrscheinlichkeit}} Datei:P_ID2016__Dig_Z_4_6.png|right|frame|Drei Signalraumkon…“)
 
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Digitalsignalübertragung/Approximation der Fehlerwahrscheinlichkeit}}
 
{{quiz-Header|Buchseite=Digitalsignalübertragung/Approximation der Fehlerwahrscheinlichkeit}}
  
[[File:P_ID2016__Dig_Z_4_6.png|right|frame|Drei Signalraumkonstellationen]]
+
[[File:P_ID2017__Dig_A_4_7.png|right|frame|WDF mit ungleichen Symbolwahrscheinlichkeiten]]
 +
Wir betrachten ein Übertragungssystem mit
 +
* nur einer Basisfunktino ($N = 1$),
 +
* zwei Signalen $s_0 = E_s^{\rm 1/2}$ und $s_1 = \, –E_s^{\rm 1/2} (M = 2)$,
 +
* einem AWGN–Kanal mit Varianz $\sigma_n^2 = N_0/2$.
 +
 
 +
Da in dieser Aufgabe der allgemeine Fall ${\rm Pr}(m_0) ≠ {\rm Pr}(m_1)$ behandelt wird, genügt es nicht, die bedingten Dichtefunktionen $p_{\it r|m_i}(\rho |m_i)$ zu betrachten. Vielmehr müssen diese noch mit den Symbolwahrscheinlichkeiten ${\rm Pr}(m_i)$ multipliziert weden (für $i$ sind hier die Werte $0$ und $1$ einzusetzen).
 +
 
 +
Liegt die Entscheidungsgrenze zwischen den beiden Regionen $I_0$ und $I_1$ bei $G = 0$, also in der Mitte zwischen $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$, so ist die Fehlerwahrscheinlichkeit unabhängig von den Auftrittswahrscheinlichkeiten ${\rm Pr}(m_0)$ und ${\rm Pr}(m_1)$:
 +
:$$p_{\rm S}  = {\rm Pr}({ \cal E} ) =  {\rm Q} \left ( \frac{d/2}{\sigma_n} \right ) \hspace{0.05cm}.$$
 +
 
 +
Hierbei gibt $d$ den Abstand zwischen den Signalpunkten $s_0$ und $s_1$ an und $d/2$ dementsprechend den jeweiligen Abstand von $s_0$ bzw. $s_1$ von der Entscheidungsgrenze $G = 0$. Der Effektivwert (Wurzel aus der Varianz) des AWGN–Rauschens ist $\sigma_n$.
 +
 
 +
Sind dagegen die Auftrittswahrscheinlichkeiten unterschiedlich ⇒ ${\rm Pr}(m_0) ≠ {\rm Pr}(m_1)$, so kann durch eine Verschiebung der Entscheidergrenze $G$ eine kleinere Fehlerwahrscheinlichkeit erzielt werden:
 +
:$$p_{\rm S}  =  {\rm Pr}(m_1) \cdot {\rm Q} \left ( \frac{d/2}{\sigma_n} \cdot (1 + \gamma) \right )
 +
+ {\rm Pr}(m_0) \cdot {\rm Q} \left ( \frac{d/2}{\sigma_n} \cdot (1 - \gamma) \right )\hspace{0.05cm},$$
 +
 
 +
wobei die Hilfsgröße $\gamma$ wie folgt definiert ist:
 +
:$$\gamma = 2 \cdot \frac{  \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_1)}{{\rm Pr}( m_0)}
 +
\hspace{0.05cm},\hspace{0.2cm} G_{\rm opt} = \gamma \cdot E_{\rm S}^{1/2}\hspace{0.05cm}.$$
 +
 
 +
''Hinweise:''
 +
* Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit| Approximation der Fehlerwahrscheinlichkeit]].
 +
* Die Werte der Q–Funktion können Sie mit folgendem Interaktionsmodul ermitteln: [[Komplementäre Gaußsche Fehlerfunktion]].
 +
 
  
  

Revision as of 13:53, 7 November 2017

WDF mit ungleichen Symbolwahrscheinlichkeiten

Wir betrachten ein Übertragungssystem mit

  • nur einer Basisfunktino ($N = 1$),
  • zwei Signalen $s_0 = E_s^{\rm 1/2}$ und $s_1 = \, –E_s^{\rm 1/2} (M = 2)$,
  • einem AWGN–Kanal mit Varianz $\sigma_n^2 = N_0/2$.

Da in dieser Aufgabe der allgemeine Fall ${\rm Pr}(m_0) ≠ {\rm Pr}(m_1)$ behandelt wird, genügt es nicht, die bedingten Dichtefunktionen $p_{\it r|m_i}(\rho |m_i)$ zu betrachten. Vielmehr müssen diese noch mit den Symbolwahrscheinlichkeiten ${\rm Pr}(m_i)$ multipliziert weden (für $i$ sind hier die Werte $0$ und $1$ einzusetzen).

Liegt die Entscheidungsgrenze zwischen den beiden Regionen $I_0$ und $I_1$ bei $G = 0$, also in der Mitte zwischen $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$, so ist die Fehlerwahrscheinlichkeit unabhängig von den Auftrittswahrscheinlichkeiten ${\rm Pr}(m_0)$ und ${\rm Pr}(m_1)$:

$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right ) \hspace{0.05cm}.$$

Hierbei gibt $d$ den Abstand zwischen den Signalpunkten $s_0$ und $s_1$ an und $d/2$ dementsprechend den jeweiligen Abstand von $s_0$ bzw. $s_1$ von der Entscheidungsgrenze $G = 0$. Der Effektivwert (Wurzel aus der Varianz) des AWGN–Rauschens ist $\sigma_n$.

Sind dagegen die Auftrittswahrscheinlichkeiten unterschiedlich ⇒ ${\rm Pr}(m_0) ≠ {\rm Pr}(m_1)$, so kann durch eine Verschiebung der Entscheidergrenze $G$ eine kleinere Fehlerwahrscheinlichkeit erzielt werden:

$$p_{\rm S} = {\rm Pr}(m_1) \cdot {\rm Q} \left ( \frac{d/2}{\sigma_n} \cdot (1 + \gamma) \right ) + {\rm Pr}(m_0) \cdot {\rm Q} \left ( \frac{d/2}{\sigma_n} \cdot (1 - \gamma) \right )\hspace{0.05cm},$$

wobei die Hilfsgröße $\gamma$ wie folgt definiert ist:

$$\gamma = 2 \cdot \frac{ \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_1)}{{\rm Pr}( m_0)} \hspace{0.05cm},\hspace{0.2cm} G_{\rm opt} = \gamma \cdot E_{\rm S}^{1/2}\hspace{0.05cm}.$$

Hinweise:


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz$ =

$ab$


Musterlösung

(1) 


(2) 


(3) 


(4) 


(5)