Difference between revisions of "Aufgaben:Exercise 4.10: Binary and Quaternary"

From LNTwww
 
(3 intermediate revisions by one other user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID384__Sto_A_4_10.png|right|300px|frame|Binary signal  $b(t)$  and quaternary signal  $q(t)$]]
+
[[File:P_ID384__Sto_A_4_10.png|right|300px|frame|Binary signal  $b(t)$,  quaternary signal  $q(t)$]]
We consider here a binay signal  $b(t)$  and a quaternaryärsignal  $q(t)$, where:
+
We consider here a binay signal  $b(t)$  and a quaternary signal  $q(t)$.
*The two signals are rectangular in shape, and the duration of each rectangle is  $T$  (symbol duration).
+
*The two signals are rectangular in shape.  The duration of each rectangle is  $T$  (symbol duration).
 
*The symbols represented by the pulse heights of the individual rectangular pulses  $($with step number  $M = 2$  or  $M = 4)$  are statistically independent.
 
*The symbols represented by the pulse heights of the individual rectangular pulses  $($with step number  $M = 2$  or  $M = 4)$  are statistically independent.
*Because of the bipolar signal constellation, both signals are have no DC values if the symbol probabilities are chosen appropriately (symmetrically).
+
*Because of the bipolar signal constellation,  both signals have no DC component if the symbol probabilities are chosen appropriately  (symmetrically).
*Because of the latter property, it follows for the probabilities of the binary symbols:
+
*Because of the latter property,  it follows for the probabilities of the binary symbols:
 
:$${\rm Pr}\big[b(t) = +b_0\big] = {\rm Pr}\big[b(t) = -b_0\big] ={1}/{2}.$$
 
:$${\rm Pr}\big[b(t) = +b_0\big] = {\rm Pr}\big[b(t) = -b_0\big] ={1}/{2}.$$
*In contrast, for the quarternary signal:
+
*In contrast,  for the quarternary signal:
 
:$${\rm Pr}\big[q(t) = +3 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -3 \hspace{0.05cm}{\rm V}\big]= {1}/{6},$$
 
:$${\rm Pr}\big[q(t) = +3 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -3 \hspace{0.05cm}{\rm V}\big]= {1}/{6},$$
 
:$${\rm Pr}\big[q(t) = +1 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -1 \hspace{0.05cm}{\rm V}\big]= {2}/{6}.$$
 
:$${\rm Pr}\big[q(t) = +1 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -1 \hspace{0.05cm}{\rm V}\big]= {2}/{6}.$$
  
  
 
+
'''Hint''':  This exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
 
 
 
 
Hint:
 
*This exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
 
 
   
 
   
  
Line 27: Line 23:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the ACF&ndash;value&nbsp; $\varphi_q(\tau = 0)$&nbsp; of the quaternary signal.
+
{Calculate the ACF value&nbsp; $\varphi_q(\tau = 0)$&nbsp; of the quaternary signal.
 
|type="{}"}
 
|type="{}"}
 
$\varphi_q(\tau = 0) \ = \ $ { 3.667 3% } $\ \rm V^2$
 
$\varphi_q(\tau = 0) \ = \ $ { 3.667 3% } $\ \rm V^2$
  
  
{What is the magnitude of the ACF&ndash;value when&nbsp; $\tau = T$&nbsp;? Justify why the ACF&ndash;values for&nbsp; $\tau| > T$&nbsp; are the same size.&nbsp; Sketch the ACF&ndash;progression.
+
{What is the magnitude of the ACF value when&nbsp; $\tau = T$&nbsp;? Justify why the ACF values for&nbsp; $|\tau| > T$&nbsp; are of the same size.&nbsp; Sketch the ACF diagram.
 
|type="{}"}
 
|type="{}"}
 
$\varphi_q(\tau = T) \ = \ $ { 0. } $\ \rm V^2$
 
$\varphi_q(\tau = T) \ = \ $ { 0. } $\ \rm V^2$
Line 38: Line 34:
  
  
{With which amplitude values&nbsp; $(\pm b_0)$&nbsp; does the binary signal&nbsp; $b(t)$&nbsp; have exactly the same ASF?
+
{With which amplitude values&nbsp; $(\pm b_0)$&nbsp; does the binary signal&nbsp; $b(t)$&nbsp; have exactly the same ACF?
 
|type="{}"}
 
|type="{}"}
 
$b_0\ = \ $ { 1.915 3% } $\ \rm V$
 
$b_0\ = \ $ { 1.915 3% } $\ \rm V$
  
  
{Which of the following descriptive quantities of a stochastic process can be determined from the AKF?
+
{Which of the following descriptive quantities of a stochastic process can be determined from the ACF?
 
|type="[]"}
 
|type="[]"}
 
+ Period duration.
 
+ Period duration.
Line 58: Line 54:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The ACF value at the point&nbsp; $\tau = 0$&nbsp; corresponds to the mean signal power, i.e. the root mean square value of&nbsp; $q(t)$. For this holds:
+
'''(1)'''&nbsp; The ACF value at the point&nbsp; $\tau = 0$&nbsp; corresponds to the mean signal power, i.e. the variance of&nbsp; $q(t)$.&nbsp; For this holds:
[[File:P_ID385__Sto_A_4_10_b_neu.png|right|frame|Triangular ACF]]
+
[[File:P_ID385__Sto_A_4_10_b_neu.png|right|frame|Triangular auto-correlation function]]
 
:$$\varphi_q(\tau = 0)= {1}/{6 } \cdot ({\rm 3\,V})^2 + {2}/{6 } \cdot ({\rm 1\,V})^2 + {2}/{6 } \cdot (-{\rm 1\,V})^2 + {1}/{6 } \cdot (-{\rm 3\,V})^2= \rm {22}/{6 }\, \rm V^2\hspace{0.15cm}\underline{= \rm 3.667 \,V^2}.$$
 
:$$\varphi_q(\tau = 0)= {1}/{6 } \cdot ({\rm 3\,V})^2 + {2}/{6 } \cdot ({\rm 1\,V})^2 + {2}/{6 } \cdot (-{\rm 1\,V})^2 + {1}/{6 } \cdot (-{\rm 3\,V})^2= \rm {22}/{6 }\, \rm V^2\hspace{0.15cm}\underline{= \rm 3.667 \,V^2}.$$
  
  
 
'''(2)'''&nbsp; The individual symbols were assumed to be statistically independent.  
 
'''(2)'''&nbsp; The individual symbols were assumed to be statistically independent.  
*Therefore, and because of the lack of a DC component, for any integer value of&nbsp; $\nu$, the following applies here:
+
*Therefore,&nbsp; and because of the lack of a DC component,&nbsp; for any integer value of&nbsp; $\nu$,&nbsp; the following applies here:
  
 
:$${\rm E} \big [ q(t) \cdot q ( t + \nu T) \big ] = {\rm E}  \big [ q(t) \big ] \cdot {\rm E} \big [ q ( t + \nu T) \big ]\hspace{0.15cm}\underline{ = 0}.$$
 
:$${\rm E} \big [ q(t) \cdot q ( t + \nu T) \big ] = {\rm E}  \big [ q(t) \big ] \cdot {\rm E} \big [ q ( t + \nu T) \big ]\hspace{0.15cm}\underline{ = 0}.$$
  
*Thus, the ACF we are looking for has the shape sketched on the right.  
+
*Thus,&nbsp; the ACF we are looking for has the shape sketched on the right.  
*In the range&nbsp; $-T \le \tau \le +T$&nbsp; the ACF is sectionwise linear, i.e. triangular, due to the rectangular pulse shape.
+
*In the range&nbsp; $-T \le \tau \le +T$&nbsp; the ACF is sectionwise linear,&nbsp; i.e. triangular,&nbsp; due to the rectangular pulse shape.
  
 
<br clear=all>
 
<br clear=all>
'''(3)'''&nbsp; The&nbsp; ACF $\varphi_b(\tau)$&nbsp; of the binary signal is also identically zero due to the statistically independent symbols in the range&nbsp; $| \tau| > T$&nbsp; and for&nbsp; $-T \le \tau \le +T$&nbsp; also results in a triangular shape.  
+
'''(3)'''&nbsp; The&nbsp; ACF $\varphi_b(\tau)$&nbsp; of the binary signal is also identically zero due to the statistically independent symbols in the range&nbsp; $| \tau| > T$.&nbsp;  
*For the quadratic mean, one obtains:
+
*For&nbsp; $-T \le \tau \le +T$&nbsp; itnalso results in a triangular shape.  
 +
*For the second moment,&nbsp; one obtains:
 
:$$\varphi_b (\tau = 0) = b_{\rm 0}^{\rm 2}.$$
 
:$$\varphi_b (\tau = 0) = b_{\rm 0}^{\rm 2}.$$
  
*With&nbsp; $b_0\hspace{0.15cm}\underline{= 1.915\, \rm V}$&nbsp; the two autocorrelation functions&nbsp; $\varphi_q(\tau)$&nbsp; and&nbsp; $\varphi_b(\tau)$ are identical.
+
*With&nbsp; $b_0\hspace{0.15cm}\underline{= 1.915\, \rm V}$&nbsp; the two auto-correlation functions&nbsp; $\varphi_q(\tau)$&nbsp; and&nbsp; $\varphi_b(\tau)$ are identical.
  
  
  
'''(4)'''&nbsp; Correct are <u>the proposed solutions 1, 3, and 4</u>.  
+
'''(4)'''&nbsp; Correct are&nbsp; <u>the proposed solutions 1, 3, and 4</u>.  
  
 
From the autocorrelation function we can actually determine:
 
From the autocorrelation function we can actually determine:
*the period&nbsp; $T_0$: &nbsp; this is the same for the pattern signals and the ACF;
+
*The period&nbsp; $T_0$: &nbsp; this is the same for the pattern signals and the ACF;
* the linear mean: &nbsp; root of the final value of the ACF for&nbsp; $\tau \to \infty$&nbsp; and
+
* the linear mean: &nbsp; root of the final value of the ACF for&nbsp; $\tau \to \infty$;&nbsp;  
 
* the variance: &nbsp;difference of the ACF values of&nbsp; $\tau = 0$&nbsp; and&nbsp; $\tau \to \infty$.  
 
* the variance: &nbsp;difference of the ACF values of&nbsp; $\tau = 0$&nbsp; and&nbsp; $\tau \to \infty$.  
  
  
 
Cannot be determined:
 
Cannot be determined:
* the probability density function: &nbsp;despite&nbsp; $\varphi_q(\tau) =\varphi_b(\tau)$&nbsp; is&nbsp; $f_q(q) \ne f_b(b)$;
+
* The probability density function&nbsp; $\rm (PDF)$: <br> &nbsp; &nbsp; &nbsp; despite&nbsp; $\varphi_q(\tau) =\varphi_b(\tau)$ &nbsp; &rArr; &nbsp; $f_q(q) \ne f_b(b)$;
* the moments of higher order: &nbsp;for their calculation one needs the PDF;  
+
* the moments of higher order: <br> &nbsp; &nbsp; &nbsp; for their calculation one needs the PDF;  
* All phase relations and symmetry properties are not recognizable from the ACF.
+
* all phase relations and symmetry properties are not recognizable from the ACF.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 14:20, 18 January 2023

Binary signal  $b(t)$,  quaternary signal  $q(t)$

We consider here a binay signal  $b(t)$  and a quaternary signal  $q(t)$.

  • The two signals are rectangular in shape.  The duration of each rectangle is  $T$  (symbol duration).
  • The symbols represented by the pulse heights of the individual rectangular pulses  $($with step number  $M = 2$  or  $M = 4)$  are statistically independent.
  • Because of the bipolar signal constellation,  both signals have no DC component if the symbol probabilities are chosen appropriately  (symmetrically).
  • Because of the latter property,  it follows for the probabilities of the binary symbols:
$${\rm Pr}\big[b(t) = +b_0\big] = {\rm Pr}\big[b(t) = -b_0\big] ={1}/{2}.$$
  • In contrast,  for the quarternary signal:
$${\rm Pr}\big[q(t) = +3 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -3 \hspace{0.05cm}{\rm V}\big]= {1}/{6},$$
$${\rm Pr}\big[q(t) = +1 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -1 \hspace{0.05cm}{\rm V}\big]= {2}/{6}.$$


Hint:  This exercise belongs to the chapter  Auto-Correlation Function.



Questions

1

Calculate the ACF value  $\varphi_q(\tau = 0)$  of the quaternary signal.

$\varphi_q(\tau = 0) \ = \ $

$\ \rm V^2$

2

What is the magnitude of the ACF value when  $\tau = T$ ? Justify why the ACF values for  $|\tau| > T$  are of the same size.  Sketch the ACF diagram.

$\varphi_q(\tau = T) \ = \ $

$\ \rm V^2$

3

With which amplitude values  $(\pm b_0)$  does the binary signal  $b(t)$  have exactly the same ACF?

$b_0\ = \ $

$\ \rm V$

4

Which of the following descriptive quantities of a stochastic process can be determined from the ACF?

Period duration.
Probability density function.
Linear mean value.
Variance.
3rd order moment.
Phase relations.


Solution

(1)  The ACF value at the point  $\tau = 0$  corresponds to the mean signal power, i.e. the variance of  $q(t)$.  For this holds:

Triangular auto-correlation function
$$\varphi_q(\tau = 0)= {1}/{6 } \cdot ({\rm 3\,V})^2 + {2}/{6 } \cdot ({\rm 1\,V})^2 + {2}/{6 } \cdot (-{\rm 1\,V})^2 + {1}/{6 } \cdot (-{\rm 3\,V})^2= \rm {22}/{6 }\, \rm V^2\hspace{0.15cm}\underline{= \rm 3.667 \,V^2}.$$


(2)  The individual symbols were assumed to be statistically independent.

  • Therefore,  and because of the lack of a DC component,  for any integer value of  $\nu$,  the following applies here:
$${\rm E} \big [ q(t) \cdot q ( t + \nu T) \big ] = {\rm E} \big [ q(t) \big ] \cdot {\rm E} \big [ q ( t + \nu T) \big ]\hspace{0.15cm}\underline{ = 0}.$$
  • Thus,  the ACF we are looking for has the shape sketched on the right.
  • In the range  $-T \le \tau \le +T$  the ACF is sectionwise linear,  i.e. triangular,  due to the rectangular pulse shape.


(3)  The  ACF $\varphi_b(\tau)$  of the binary signal is also identically zero due to the statistically independent symbols in the range  $| \tau| > T$. 

  • For  $-T \le \tau \le +T$  itnalso results in a triangular shape.
  • For the second moment,  one obtains:
$$\varphi_b (\tau = 0) = b_{\rm 0}^{\rm 2}.$$
  • With  $b_0\hspace{0.15cm}\underline{= 1.915\, \rm V}$  the two auto-correlation functions  $\varphi_q(\tau)$  and  $\varphi_b(\tau)$ are identical.


(4)  Correct are  the proposed solutions 1, 3, and 4.

From the autocorrelation function we can actually determine:

  • The period  $T_0$:   this is the same for the pattern signals and the ACF;
  • the linear mean:   root of the final value of the ACF for  $\tau \to \infty$; 
  • the variance:  difference of the ACF values of  $\tau = 0$  and  $\tau \to \infty$.


Cannot be determined:

  • The probability density function  $\rm (PDF)$:
          despite  $\varphi_q(\tau) =\varphi_b(\tau)$   ⇒   $f_q(q) \ne f_b(b)$;
  • the moments of higher order:
          for their calculation one needs the PDF;
  • all phase relations and symmetry properties are not recognizable from the ACF.