Difference between revisions of "Aufgaben:Exercise 4.10Z: Correlation Duration"

From LNTwww
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID393__Sto_Z_4_10.png|right|frame|Sample functions of ergodic processes]]
+
[[File:P_ID393__Sto_Z_4_10.png|right|frame|Pattern signals of ergodic processes]]
The adjacent image shows pattern signals of two random processes  $\{x_i(t)\}$  and  $\{y_i(t)\}$  each with equal power  $P_x = P_y = 5\hspace{0.05 cm} \rm mW$.  Assuming here the resistance  $R = 50\hspace{0.05 cm}\rm \Omega$.  
+
The graphic shows pattern signals of two random processes  $\{x_i(t)\}$  and  $\{y_i(t)\}$  with equal power   
 +
:$$P_x = P_y = 5\hspace{0.05 cm} \rm mW.$$  
 +
Assuming here the resistance  $R = 50\hspace{0.05 cm}\rm \Omega$.  
  
  
Line 13: Line 15:
  
  
 
+
As can be seen from the diagram below,  the random process  $\{y_i(t)\}$  has much stronger internal statistical bindings than the random process  $\{x_i(t)\}$.
 
+
Or,  to put it another way:  
As can be seen from the picture below, the random process  $\{y_i(t)\}$  has much stronger internal statistical bindings than the random process  $\{x_i(t)\}$.
 
Or, to put it another way:  
 
 
*The random process  $\{y_i(t)\}$  is lower frequency than  $\{x_i(t)\}$.  
 
*The random process  $\{y_i(t)\}$  is lower frequency than  $\{x_i(t)\}$.  
 
*The equivalent ACF duration is  $\nabla \tau_y = 10 \hspace{0.05 cm}\rm µ s $.
 
*The equivalent ACF duration is  $\nabla \tau_y = 10 \hspace{0.05 cm}\rm µ s $.
Line 23: Line 23:
  
  
From the sketch it can also be seen that  $\{y_i(t)\}$  in contrast to  $\{x_i(t)\}$  is not equal signal free.  The equal signal component is rather  $m_y = -0.3 \hspace{0.05 cm}\rm V$.
+
From the sketch it can also be seen that  $\{y_i(t)\}$  in contrast to  $\{x_i(t)\}$  is not DC free.  The DC signal component is rather  $m_y = -0.3 \hspace{0.05 cm}\rm V$.
 
 
 
 
 
 
  
  
Line 32: Line 29:
  
  
Hint:
+
'''Hint''':
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
*Reference is made in particular to the page  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Interpretation_of_the_auto-correlation_function|Interpretation of the auto-correlation function]].
+
*Reference is made in particular to the section  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Interpretation_of_the_auto-correlation_function|Interpretation of the auto-correlation function]].
 
   
 
   
  
Line 48: Line 45:
  
  
{What ACF–values result für  $\tau = 2\hspace{0.05 cm}\rm µs$  resp.  $\tau = 5\hspace{0.05 cm}\rm µ s$?
+
{What ACF values result for  $\tau = 2\hspace{0.05 cm}\rm µs$  resp.  $\tau = 5\hspace{0.05 cm}\rm µ s$?
 
|type="{}"}
 
|type="{}"}
 
$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm µ s}) \ = \ $ { 3.025 3% } $\ \rm mW$
 
$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm µ s}) \ = \ $ { 3.025 3% } $\ \rm mW$
Line 54: Line 51:
  
  
{What is the correlation time  $T_{\rm K}$, i.e. the time at which the ACF has dropped to half of the maximum?
+
{What is the correlation time  $T_{\rm K}$,  i.e. the time at which the ACF has dropped to half of the maximum?
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm K}  \ = \ $ { 2.35 3% } $\ \rm µ s$
 
$T_{\rm K}  \ = \ $ { 2.35 3% } $\ \rm µ s$
Line 64: Line 61:
  
  
{Calculate the ACF  $\varphi_x(\tau)$.  What is the ACF value at  $\tau = 10\hspace{0.05 cm}\rm µ s$?  What would be the ACF–curve with positive mean  $(m_y = +0.3 \hspace{0.05 cm}\rm V)$?
+
{Calculate the ACF  $\varphi_x(\tau)$.  What is the ACF value at  $\tau = 10\hspace{0.05 cm}\rm µ s$?  What would be the ACF curve with positive mean  $(m_y = +0.3 \hspace{0.05 cm}\rm V)$?
 
|type="{}"}
 
|type="{}"}
 
$\varphi_y(\tau = 10\hspace{0.05 cm}{\rm µ s}) \ = \ $ { 1.938 3% } $\ \rm mW$
 
$\varphi_y(\tau = 10\hspace{0.05 cm}{\rm µ s}) \ = \ $ { 1.938 3% } $\ \rm mW$
Line 74: Line 71:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  The quadratic mean results to  $m_{2x} = R \cdot P_x = 50 \hspace{0.05 cm}{\rm \Omega}\cdot 5 \hspace{0.05 cm}{\rm mW}= 0.25 \hspace{0.05 cm}{\rm V}^2.$  
+
'''(1)'''  The second moment results to  $m_{2x} = R \cdot P_x = 50 \hspace{0.05 cm}{\rm \Omega}\cdot 5 \hspace{0.05 cm}{\rm mW}= 0.25 \hspace{0.05 cm}{\rm V}^2.$  
 
*From this follows the standard deviation  $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$.
 
*From this follows the standard deviation  $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$.
  
  
  
'''(2)'''  Because  $P_x = \varphi_x (\tau = 0)$  holds for the ACF in general:  
+
'''(2)'''  Because of  $P_x = \varphi_x (\tau = 0)$  holds for the ACF in general:  
 
:$$\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$$
 
:$$\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$$
 
*From this we obtain:
 
*From this we obtain:
Line 92: Line 89:
  
 
*From this follows  $T_{\rm K}\hspace{0.15 cm}\underline{= 2.35\hspace{0.05 cm}{\rm µ s}}$.  
 
*From this follows  $T_{\rm K}\hspace{0.15 cm}\underline{= 2.35\hspace{0.05 cm}{\rm µ s}}$.  
*With other ACF form, a different ratio is obtained for  $T_{\rm K} / {\rm \nabla} \tau_x$.
+
*With another ACF form,  a different ratio is obtained for  $T_{\rm K} / {\rm \nabla} \tau_x$.
  
  
  
  
'''(4)'''  Because  $P_x = P_y$  the root mean square values of  $x$  and  $y$  are equal, respectively  $0.25\hspace{0.05 cm}\rm V^2$.  
+
'''(4)'''  Because of  $P_x = P_y$  the second order moments of  $x$  and  $y$  are equal   $0.25\hspace{0.05 cm}\rm V^2$.  
 
*Taking into account the mean value  $m_y = -0.3 \hspace{0.05 cm}\rm V$  holds:
 
*Taking into account the mean value  $m_y = -0.3 \hspace{0.05 cm}\rm V$  holds:
 
:$$m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$$  
 
:$$m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$$  
Line 105: Line 102:
  
  
'''(5)'''  In terms of unit resistance  $ R = 1 \hspace{0.05 cm}{\rm \Omega}$  the ASF of the process  $\{y_i(t)\}$ is:
+
'''(5)'''  In terms of unit resistance  $ R = 1 \hspace{0.05 cm}{\rm \Omega}$  the ACF of the process  $\{y_i(t)\}$ is:
 
:$$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$
 
:$$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$
  
*On the right you can see the function progression.  Related to the resistor  $ R = 50 \hspace{0.05 cm}{\rm \Omega}$  results in the following ACF values:
+
*On the right you can see the ACF curve.  Related to the resistor  $ R = 50 \hspace{0.05 cm}{\rm \Omega}$  results in the following ACF values:
 
:$$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.5cm} \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$
 
:$$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.5cm} \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$
  
Line 115: Line 112:
 
\hspace{0.15 cm}\underline{=1.938\hspace{0.05 cm}\rm mW}.$$
 
\hspace{0.15 cm}\underline{=1.938\hspace{0.05 cm}\rm mW}.$$
  
*With positive mean  $m_y$  (having the same amplitude), there would be no change in the ASF, since  $m_y$  is squared in the ASF equation.
+
*With positive mean  $m_y$  $($having the same magnitude$)$,  there would be no change in the ACF,  since  $m_y$  is squared in the ACF equation.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 19:52, 20 March 2022

Pattern signals of ergodic processes

The graphic shows pattern signals of two random processes  $\{x_i(t)\}$  and  $\{y_i(t)\}$  with equal power 

$$P_x = P_y = 5\hspace{0.05 cm} \rm mW.$$

Assuming here the resistance  $R = 50\hspace{0.05 cm}\rm \Omega$.


The random process  $\{x_i(t)\}$

  • is zero mean  $(m_x = 0)$,
  • has the Gaussian ACF   $\varphi_x (\tau) = \varphi_x (\tau = 0) \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2},$  and
  • exhibits the equivalent ACF duration  $\nabla \tau_x = 5\hspace{0.05 cm}\rm µ s $ .


As can be seen from the diagram below,  the random process  $\{y_i(t)\}$  has much stronger internal statistical bindings than the random process  $\{x_i(t)\}$. Or,  to put it another way:

  • The random process  $\{y_i(t)\}$  is lower frequency than  $\{x_i(t)\}$.
  • The equivalent ACF duration is  $\nabla \tau_y = 10 \hspace{0.05 cm}\rm µ s $.



From the sketch it can also be seen that  $\{y_i(t)\}$  in contrast to  $\{x_i(t)\}$  is not DC free.  The DC signal component is rather  $m_y = -0.3 \hspace{0.05 cm}\rm V$.



Hint:



Questions

1

What is the standard deviation  $(\sigma_x)$  of the pattern signals of the process  $\{x_i(t)\}$?

$\sigma_x \ = \ $

$\ \rm V$

2

What ACF values result for  $\tau = 2\hspace{0.05 cm}\rm µs$  resp.  $\tau = 5\hspace{0.05 cm}\rm µ s$?

$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm µ s}) \ = \ $

$\ \rm mW$
$\varphi_x(\tau = 5\hspace{0.05 cm}{\rm µ s}) \ = \ $

$\ \rm mW$

3

What is the correlation time  $T_{\rm K}$,  i.e. the time at which the ACF has dropped to half of the maximum?

$T_{\rm K} \ = \ $

$\ \rm µ s$

4

What is the standard deviation  $(\sigma_y)$  of the pattern signals of the process $\{y_i(t)\}$?

$\sigma_y \ = \ $

$\ \rm V$

5

Calculate the ACF  $\varphi_x(\tau)$.  What is the ACF value at  $\tau = 10\hspace{0.05 cm}\rm µ s$?  What would be the ACF curve with positive mean  $(m_y = +0.3 \hspace{0.05 cm}\rm V)$?

$\varphi_y(\tau = 10\hspace{0.05 cm}{\rm µ s}) \ = \ $

$\ \rm mW$


Solution

(1)  The second moment results to  $m_{2x} = R \cdot P_x = 50 \hspace{0.05 cm}{\rm \Omega}\cdot 5 \hspace{0.05 cm}{\rm mW}= 0.25 \hspace{0.05 cm}{\rm V}^2.$

  • From this follows the standard deviation  $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$.


(2)  Because of  $P_x = \varphi_x (\tau = 0)$  holds for the ACF in general:

$$\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$$
  • From this we obtain:
$$\varphi_x (\tau = {\rm 2\hspace{0.1cm} µ s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- {\rm 0.16 }\pi } \hspace{0.15cm}\underline{= 3.025 \hspace{0.1cm} \rm mW},$$
$$\varphi_x (\tau = {\rm 5\hspace{0.1cm} \rm µ s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi } \hspace{0.15cm}\underline{= 0.216 \hspace{0.1cm} \rm mW}.$$


Two times Gaussian ACF

(3)  Here the following determination equation holds:

$${\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(T_{\rm K} / {\rm \nabla} \tau_x)^2} \stackrel{!}{=} {\rm 0.5} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} (T_{\rm K} / {\rm \nabla} \tau_x)^2 = \sqrt{{ \ln(2)}/{\pi}}\hspace{0.05cm}.$$
  • From this follows  $T_{\rm K}\hspace{0.15 cm}\underline{= 2.35\hspace{0.05 cm}{\rm µ s}}$.
  • With another ACF form,  a different ratio is obtained for  $T_{\rm K} / {\rm \nabla} \tau_x$.



(4)  Because of  $P_x = P_y$  the second order moments of  $x$  and  $y$  are equal   $0.25\hspace{0.05 cm}\rm V^2$.

  • Taking into account the mean value  $m_y = -0.3 \hspace{0.05 cm}\rm V$  holds:
$$m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$$
  • From this follows:
$$\sigma_y\hspace{0.15 cm}\underline{= 0.4\hspace{0.05 cm}{\rm V}}.$$


(5)  In terms of unit resistance  $ R = 1 \hspace{0.05 cm}{\rm \Omega}$  the ACF of the process  $\{y_i(t)\}$ is:

$$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$
  • On the right you can see the ACF curve.  Related to the resistor  $ R = 50 \hspace{0.05 cm}{\rm \Omega}$  results in the following ACF values:
$$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.5cm} \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$
  • From this follows:
$$\varphi_y(\tau) = 1.8 \hspace{0.1cm} {\rm mW} + 3.2 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2} \hspace{0.3cm }\Rightarrow \hspace{0.3cm }\varphi_y(\tau = 10\hspace{0.05 cm}{\rm µ s}) \hspace{0.15 cm}\underline{=1.938\hspace{0.05 cm}\rm mW}.$$
  • With positive mean  $m_y$  $($having the same magnitude$)$,  there would be no change in the ACF,  since  $m_y$  is squared in the ACF equation.