Difference between revisions of "Aufgaben:Exercise 4.11: Analysis of Parity-check Matrices"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Grundlegendes zu den Low–density Parity–check Codes}}
+
{{quiz-Header|Buchseite=Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes}}
  
[[File:P_ID3067__KC_A_4_11_v2.png|right|frame|Produktcode, beschrieben durch die Prüfmatrix  $\mathbf{H}$]]
+
[[File:P_ID3067__KC_A_4_11_v2.png|right|frame|Product code described by the parity-check matrix  $\mathbf{H}$]]
In nebenstehender Grafik ist oben ein Produktcode angegeben, der durch folgende Prüfgleichungen gekennzeichnet ist:
+
In the adjacent graphic, a product code is indicated at the top, which is characterized by the following parity-check equations:
 
:$$p_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_1 \oplus u_2\hspace{0.05cm},\hspace{0.3cm}
 
:$$p_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_1 \oplus u_2\hspace{0.05cm},\hspace{0.3cm}
 
p_2 = u_3 \oplus u_4\hspace{0.05cm},\hspace{0.3cm}
 
p_2 = u_3 \oplus u_4\hspace{0.05cm},\hspace{0.3cm}
Line 8: Line 8:
 
p_4 = u_2 \oplus u_4\hspace{0.05cm}.$$
 
p_4 = u_2 \oplus u_4\hspace{0.05cm}.$$
  
Darunter sind die Prüfmatrizen  $\mathbf{H}_1, \ \mathbf{H}_2$ und $\mathbf{H}_3$  angegeben. Zu prüfen ist, welche der Matrizen den gegebenen Produktcode entsprechend der Gleichung  $\underline{x} = \underline{u} \cdot \mathbf{H}^{\rm T}$  richtig beschreiben, wenn von folgenden Definitionen ausgegangen wird:
+
Below are given the check matrices  $\mathbf{H}_1, \ \mathbf{H}_2$ and $\mathbf{H}_3$ . To be checked is which of the matrices has the given product code according to the equation  $\underline{x} = \underline{u} \cdot \mathbf{H}^{\rm T}$  correctly describing the given product code, assuming the following definitions:
* dem Codewort  $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$,
+
* the code word  $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$,
* dem Codewort  $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.
+
* the code word  $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.
  
  
Alle&nbsp; $\mathbf{H}$&ndash;Matrizen beinhalten weniger Einsen als Nullen. Dies ist ein Kennzeichen der so genannten <i>Low&ndash;density Parity&ndash;check Codes</i>&nbsp; (kurz: &nbsp;$\rm LDPC$&ndash;Codes). Bei den praxisrelevanten LDPC&ndash;Codes ist der Einsen&ndash;Anteil allerdings noch deutlich geringer als bei diesen Beispielen.
+
All $\mathbf{H}$&ndash;matrices contain fewer ones than zeros. This is a characteristic of the so-called low&ndash;density parity&ndash;check codes&nbsp; (short: &nbsp;$\rm LDPC$ codes). In the case of LDPC codes relevant to practice, however, the share of ones is still significantly lower than in these examples.
  
Weiterhin ist für die Aufgabe anzumerken:
+
Furthermore, note for the exercise:
* Ein&nbsp; $(n, \ k)$&ndash;Blockcode ist systematisch, wenn die ersten&nbsp; $k$&nbsp; Bit des Codewortes&nbsp; $\underline{x}$&nbsp; das Informationswort&nbsp; $\underline{u}$&nbsp; beinhaltet. Mit der Codewortdefinition&nbsp; $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$&nbsp; muss dann die Prüfmatrix&nbsp; $\mathbf{H}$&nbsp; mit einer&nbsp; $k &times k$&ndash;Diagonalmatrix enden.
+
* A&nbsp; $(n, \ k)$&ndash;block code is systematic if the first&nbsp; $k$&nbsp; bits of the code word&nbsp; $\underline{x}$&nbsp; contains the information word&nbsp; $\underline{u}$&nbsp;. With the code word definition&nbsp; $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$&nbsp; the parity-check matrix&nbsp; $\mathbf{H}$&nbsp; must then end with a&nbsp; $k &times k$ diagonal matrix.
* Ein&nbsp; <i>regulärer Code</i>&nbsp; (hinsichtlich LDPC&ndash;Anwendung) liegt vor, wenn das Hamming&ndash;Gewicht aller Zeilen &nbsp; &#8658; &nbsp; $w_{\rm Z}$ und das Hamming&ndash;Gewicht aller Spalten &nbsp; &#8658; &nbsp; $w_{\rm S}$ jeweils gleich sind. Andernfalls spricht man von einem&nbsp; <i>irregulären LDPC&ndash;Code</i>.
+
* A&nbsp; <i>regular code</i>&nbsp; (with respect to LDPC application) exists, if the Hamming&ndash;weight of all rows &nbsp; &#8658; &nbsp; $w_{\rm Z}$ and the Hamming weight of all columns &nbsp; &#8658; &nbsp; $w_{\rm S}$ are equal in each case. Otherwise, one speaks of an&nbsp; <i>irregular LDPC code</i>.
* Die Prüfmatrix&nbsp; $\mathbf{H}$&nbsp; eines herkömmlichen linearen&nbsp; $(n, \ k)$&ndash;Blockcodes besteht aus exakt&nbsp; $m = n - k$&nbsp; Zeilen und&nbsp; $n$&nbsp; Spalten. Bei den LDPC&ndash;Codes lautet dagegen die Forderung: &nbsp; $m &#8805; n - k$. Das Gleichheitszeichen trifft dann zu, wenn die&nbsp; $m$&nbsp; Prüfgleichungen statistisch unabhängig sind.
+
* The parity-check matrix&nbsp; $\mathbf{H}$&nbsp; of a conventional linear&nbsp; $(n, \ k)$ block code consists of exactly&nbsp; $m = n - k$&nbsp; rows and&nbsp; $n$&nbsp; columns. For LDPC codes, on the other hand, the requirement is &nbsp; $m &#8805; n - k$. The equal sign is true if the&nbsp; $m$&nbsp; parity-check equations are statistically independent.
* Aus der Prüfmatrix&nbsp; $\mathbf{H}$&nbsp; lässt sich eine untere Schranke für die Coderate&nbsp; $R$&nbsp; angeben:
+
* From the parity-check matrix&nbsp; $\mathbf{H}$&nbsp; a lower bound for the code rate&nbsp; $R$&nbsp; can be given:
 
:$$R \ge 1 - \frac{{\rm E}[w_{\rm S}]}{{\rm E}[w_{\rm Z}]}
 
:$$R \ge 1 - \frac{{\rm E}[w_{\rm S}]}{{\rm E}[w_{\rm Z}]}
 
\hspace{0.5cm}{\rm mit}\hspace{0.5cm}
 
\hspace{0.5cm}{\rm mit}\hspace{0.5cm}
Line 27: Line 27:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Diese Gleichung gilt für reguläre und irreguläre LDPC&ndash;Codes gleichermaßen, wobei den regulären Codes&nbsp; ${\rm E}[w_{\rm S}] = w_{\rm S}$&nbsp; und&nbsp; ${\rm E}[w_{\rm Z}] = w_{\rm Z}$&nbsp; berücksichtigt werden kann.
+
*This equation applies equally to regular and irregular LDPC&ndash;codes, where the regular codes&nbsp; ${\rm E}[w_{\rm S}] = w_{\rm S}$&nbsp; and&nbsp; ${\rm E}[w_{\rm Z}] = w_{\rm Z}$&nbsp; can be considered.
  
  
Line 37: Line 37:
  
  
''Hinweise:''
+
Hints:
* Die Aufgabe gehört zum Kapitel&nbsp; [[Channel_Coding/Grundlegendes_zu_den_Low%E2%80%93density_Parity%E2%80%93check_Codes| Grundlegendes zu den Low&ndash;density Parity&ndash;check]].
+
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes|"Basics of the Low&ndash;density Parity&ndash;check"]].
* Bezug genommen wird insbesondere auf die Seite&nbsp; [[Channel_Coding/Grundlegendes_zu_den_Low–density_Parity–check_Codes#Einige_Charakteristika_der_LDPC.E2.80.93Codes|Einige Charakteristika der LDPC&ndash;Codes]].
+
* Reference is made in particular to the page&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes#Some_characteristics_of_LDPC_codes|"Some characteristics of LDPC codes"]].
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Prüfmatrix beschreibt den vorgegebenen Produktcode entsprechend der oberen Skizze?
+
{Which parity-check matrix describes the given product code according to the sketch above?
 
|type="[]"}
 
|type="[]"}
+ $\mathbf{H}_1$&nbsp; unter der Voraussetzung&nbsp; $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$.
+
+ $\mathbf{H}_1$&nbsp; given&nbsp; $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$.
- $\mathbf{H}_1$&nbsp; unter der Voraussetzung&nbsp; $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.
+
- $\mathbf{H}_1$&nbsp; given&nbsp; $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.
+ $\mathbf{H}_2$&nbsp; unter der Voraussetzung&nbsp; $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.
+
+ $\mathbf{H}_2$&nbsp; given&nbsp; $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.
- $\mathbf{H}_3$&nbsp; unter der Voraussetzung&nbsp; $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.
+
- $\mathbf{H}_3$&nbsp; given&nbsp; $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.
  
{Für die restlichen Teilaufgaben soll stets von&nbsp; $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$ ausgegangen werden. <br>Welche Aussagen gelten für die Prüfmatrix&nbsp; $\mathbf{H}_1$?
+
{For the remaining subtasks we shall always assume&nbsp; $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$. <br>Which statements are valid for the parity-check matrix&nbsp; $\mathbf{H}_1$?
 
|type="[]"}
 
|type="[]"}
+ Der Code ist systematisch.
+
+ The code is systematic.
- Der Code ist regulär.
+
- The code is regular.
- Für die Coderate gilt&nbsp; $R > 1/2$.
+
- For the code rate holds&nbsp; $R > 1/2$.
+ Für die Coderate gilt&nbsp; $R = 1/2$.
+
+ For the code rate holds&nbsp; $R = 1/2$.
  
{Welche Aussagen gelten für die Prüfmatrix&nbsp; $\mathbf{H}_3$?
+
{What statements hold for the parity-check matrix&nbsp; $\mathbf{H}_3$?
 
|type="[]"}
 
|type="[]"}
- Es ist kein Zusammenhang zwischen&nbsp; $\mathbf{H}_1$&nbsp; und&nbsp; $\mathbf{H}_3$&nbsp; erkennbar.
+
- No relation between&nbsp; $\mathbf{H}_1$&nbsp; and&nbsp; $\mathbf{H}_3$&nbsp; is discernible.
+ Die&nbsp; $\mathbf{H}_3$&ndash;Zeilen sind Linearkombinationen von je zwei&nbsp; $\mathbf{H}_1$&ndash;Zeilen.
+
+ The&nbsp; $\mathbf{H}_3$&ndash;rows are linear combinations of two&nbsp; $\mathbf{H}_1$ ;rows each.
+ Die vier Prüfgleichungen gemäß&nbsp; $\mathbf{H}_3$&nbsp; sind linear unabhängig.
+
+ The four parity-check equations according to&nbsp; $\mathbf{H}_3$&nbsp; are linearly independent.
  
{Welche Aussagen gelten für den durch&nbsp; $\mathbf{H}_3$&nbsp; gekennzeichneten Code?
+
{Which statements apply to the code denoted by&nbsp; $\mathbf{H}_3$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Der Code ist systematisch.
+
- The code is systematic.
+ Der Code ist regulär.
+
+ The code is regular.
+ Für die Coderate gilt&nbsp; $R &#8805; 1/2$.
+
+ For the code rate holds&nbsp; $R &#8805; 1/2$.
+ Für die Coderate gilt&nbsp; $R = 1/2$.
+
+ For the code rate holds&nbsp; $R = 1/2$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
+
'''(1)'''&nbsp; Correct are the <u>solutions 1 and 3</u>:
*Mit der Codewortdefinition $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$ bezeichnet die Prüfmatrix $\mathbf{H}_1$ folgende Prüfgleichungen:
+
*With the code word definition $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$, the parity-check matrix $\mathbf{H}_1$ denotes the following check equations:
 
:$$u_1 \oplus u_2 \oplus p_1 = 0\hspace{0.05cm},\hspace{0.3cm}
 
:$$u_1 \oplus u_2 \oplus p_1 = 0\hspace{0.05cm},\hspace{0.3cm}
 
u_3 \oplus u_4 \oplus p_2 = 0\hspace{0.05cm},\hspace{0.3cm}
 
u_3 \oplus u_4 \oplus p_2 = 0\hspace{0.05cm},\hspace{0.3cm}
 
u_1 \oplus u_3 \oplus p_3 = 0\hspace{0.05cm},\hspace{0.3cm}
 
u_1 \oplus u_3 \oplus p_3 = 0\hspace{0.05cm},\hspace{0.3cm}
 
u_2 \oplus u_4 \oplus p_4 = 0\hspace{0.05cm}.$$
 
u_2 \oplus u_4 \oplus p_4 = 0\hspace{0.05cm}.$$
*Dies entspricht genau den vorne getroffenen Annahmen. Das gleiche Ergebnis erhält man für $\mathbf{H}_2$ und der Codewortdefinition $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.
+
*This corresponds exactly to the assumptions made above. The same result is obtained for $\mathbf{H}_2$ and the code word definition  $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.
  
  
Bei gleicher Codewortdefinition $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$ liefern die anderen Prüfmatrizen keinen sinnvollen Gleichungssatz:
+
With the same code word definition $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$ the other parity-check matrices do not yield a meaningful set of equations:
* Entsprechend Prüfmatrix $\mathbf{H}_1$:
+
* According to parity-check matrix $\mathbf{H}_1$:
 
:$$u_1 \oplus p_1 \oplus u_3 = 0\hspace{0.05cm},\hspace{0.3cm}
 
:$$u_1 \oplus p_1 \oplus u_3 = 0\hspace{0.05cm},\hspace{0.3cm}
 
u_2 \oplus p_2 \oplus p_3 = 0\hspace{0.05cm},\hspace{0.3cm}
 
u_2 \oplus p_2 \oplus p_3 = 0\hspace{0.05cm},\hspace{0.3cm}
 
u_1 \oplus u_2 \oplus u_4 = 0\hspace{0.05cm},\hspace{0.3cm}
 
u_1 \oplus u_2 \oplus u_4 = 0\hspace{0.05cm},\hspace{0.3cm}
 
p_1 \oplus p_2 \oplus p_4 = 0\hspace{0.05cm};$$
 
p_1 \oplus p_2 \oplus p_4 = 0\hspace{0.05cm};$$
* entsprechend Prüfmatrix $\mathbf{H}_3$:
+
* corresponding to parity-check matrix $\mathbf{H}_3$:
 
:$$u_1 \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_2 \hspace{-0.12cm}\oplus\hspace{-0.06cm} u_3  \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_4 \hspace{-0.05cm} = \hspace{-0.05cm} 0\hspace{0.05cm},\hspace{0.15cm}
 
:$$u_1 \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_2 \hspace{-0.12cm}\oplus\hspace{-0.06cm} u_3  \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_4 \hspace{-0.05cm} = \hspace{-0.05cm} 0\hspace{0.05cm},\hspace{0.15cm}
 
u_1 \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_2  \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_3  \hspace{-0.12cm}\oplus\hspace{-0.06cm}u_4  \hspace{-0.05cm} = \hspace{-0.05cm}  0\hspace{0.05cm},\hspace{0.15cm}
 
u_1 \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_2  \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_3  \hspace{-0.12cm}\oplus\hspace{-0.06cm}u_4  \hspace{-0.05cm} = \hspace{-0.05cm}  0\hspace{0.05cm},\hspace{0.15cm}
Line 97: Line 97:
  
  
'''(2)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 4</u>:
+
'''(2)'''&nbsp; Correct are the <u>proposed solutions 1 and 4</u>:
* Der Code ist systematisch, weil $\mathbf{H}_1$ mit einer $4 &times 4$&ndash;Diagonalmatrix endet.
+
* The code is systematic because $\mathbf{H}_1$ ends with a $4 &times 4$ diagonal matrix.
* Bei einem regulären (LDPC)&ndash;Code müssten in jeder Zeile und in jeder Spalte gleich viele Einsen sein.  
+
*For a regular (LDPC) code, there should be an equal number of ones in each row and in each column.  
*Die erste Bedingung ist erfüllt $(w_{\rm Z} = 3)$, nicht aber die zweite. Vielmehr gibt es (gleich oft) eine Eins bzw. zwei Einsen pro Spalte &nbsp;&#8658;&nbsp; ${\rm E}[w_{\rm S}] = 1.5$.
+
*The first condition is satisfied $(w_{\rm Z} = 3)$, but not the second. Rather, there is (equally often) one one or two ones per column &nbsp;&#8658;&nbsp; ${\rm E}[w_{\rm S}] = 1.5$.
* Bei einem irregulären Code lautet die untere Schranke für die Coderate:
+
* For an irregular code, the lower bound for the code rate is:
 
:$$R \ge 1 - \frac{{\rm E}[w_{\rm S}]}{{\rm E}[w_{\rm Z}]}
 
:$$R \ge 1 - \frac{{\rm E}[w_{\rm S}]}{{\rm E}[w_{\rm Z}]}
 
= 1 - \frac{1.5}{3} = 1/2
 
= 1 - \frac{1.5}{3} = 1/2
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* Wegen der gegebenen Codestruktur ($k = 4$ Informationsbits, $m = 4$ Prüfbits &nbsp;&#8658;&nbsp; $n = 8$ Codebits) ist hier die Coderate auch in der herkömmlichen Form angebbar: $R = k/n$ &nbsp; &#8658; &nbsp; Richtig ist Lösungsvorschlag 4 im Gegensatz zur Antwort 3.
+
* Because of the given code structure ($k = 4$ information bits, $m = 4$ check bits &nbsp;&#8658;&nbsp; $n = 8$ code bits) the code rate can also be given in the conventional form: $R = k/n$ &nbsp; &#8658; &nbsp; Correct is solution 4 in contrast to answer 3.
  
  
  
'''(3)'''&nbsp; Die $\mathbf{H}_3$&ndash;Zeilen ergeben sich aus Linearkombinationen von $\mathbf{H}_1$&ndash;Zeilen:
+
'''(3)'''&nbsp; The $\mathbf{H}_3$&ndash;rows result from linear combinations of $\mathbf{H}_1$&ndash;rows:
* Die erste $\mathbf{H}_3$&ndash;Zeile ist die Summe von Zeile 1 und Zeile 4.
+
* The first $\mathbf{H}_3$&ndash;row is the sum of row 1 and row 4.
* Die zweite $\mathbf{H}_3$&ndash;Zeile ist die Summe von Zeile 2 und Zeile 3.
+
* The second $\mathbf{H}_3$&ndash;row is the sum of row 2 and row 3.
* Die dritte $\mathbf{H}_3$&ndash;Zeile ist die Summe von Zeile 1 und Zeile 3.
+
* The third $\mathbf{H}_3$&ndash;row is the sum of row 1 and row 3.
* Die vierte $\mathbf{H}_3$&ndash;Zeile ist die Summe von Zeile 2 und Zeile 4.
+
* The fourth $\mathbf{H}_3$&ndash;row is the sum of row 2 and row 4.
  
  
Durch Linearkombinationen werden aus den vier linear unabhängigen Gleichungen bezüglich $\mathbf{H}_1$ nun vier linear unabhängige Gleichungen bezüglich $\mathbf{H}_3$ &nbsp; <br>&#8658; &nbsp;  Richtig sind also die <u>Lösungsvorschläge 2 und 3</u>.
+
By linear combinations, the four linearly independent equations with respect to $\mathbf{H}_1$ now become four linearly independent equations with respect to $\mathbf{H}_3$ &nbsp; <br>&#8658; &nbsp;  Therefore, the <u>proposed solutions 2 and 3</u> are correct.
  
  
'''(4)'''&nbsp; Hier sind die <u>Lösungsvorschläge 2, 3 und 4</u> richtig:
+
'''(4)'''&nbsp; Here, <u>solutions 2, 3, and 4</u> are correct:
* Wäre der durch $\mathbf{H}_3$ beschriebene Code systematisch, müsste $\mathbf{H}_3$ mit einer $4 &times 4$&ndash;Diagonalmatrix enden. Dies ist hier nicht der Fall.
+
* If the code described by $\mathbf{H}_3$ were systematic, $\mathbf{H}_3$ should end with a $4 &times 4$&ndash;diagonal matrix. This is not the case here.
* Die Hamming&ndash;Gewichte aller Zeilen sind gleich $(w_{\rm Z} = 4)$ und auch alle Spalten haben jeweils das gleiche Hamming&ndash;Gewicht $(w_{\rm S} = 2)$ &nbsp; &#8658; &nbsp; der Code ist regulär.
+
* The Hamming weights of all rows are equal $(w_{\rm Z} = 4)$ and also all columns each have the same Hamming weight $(w_{\rm S} = 2)$ &nbsp; &#8658; &nbsp; the code is regular.
* Daraus ergibt sich für die Coderate $R &#8805; 1 - 2/4 = 1/2$. Da aber auch die vier Zeilen von $\mathbf{H}_3$ vier unabhängige Gleichungen beschreiben, gilt ebenfalls das Gleichheitszeichen &nbsp; &#8658; &nbsp; $R = 1/2$.
+
* This gives $R &#8805; 1 - 2/4 = 1/2$ for the code rate. But since the four rows of $\mathbf{H}_3$ also describe four independent equations, the equal sign &nbsp; &#8658; &nbsp; $R = 1/2$ also holds.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 21:09, 10 December 2022

Product code described by the parity-check matrix  $\mathbf{H}$

In the adjacent graphic, a product code is indicated at the top, which is characterized by the following parity-check equations:

$$p_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_1 \oplus u_2\hspace{0.05cm},\hspace{0.3cm} p_2 = u_3 \oplus u_4\hspace{0.05cm},\hspace{0.3cm} p_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_1 \oplus u_3\hspace{0.05cm},\hspace{0.3cm} p_4 = u_2 \oplus u_4\hspace{0.05cm}.$$

Below are given the check matrices  $\mathbf{H}_1, \ \mathbf{H}_2$ and $\mathbf{H}_3$ . To be checked is which of the matrices has the given product code according to the equation  $\underline{x} = \underline{u} \cdot \mathbf{H}^{\rm T}$  correctly describing the given product code, assuming the following definitions:

  • the code word  $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$,
  • the code word  $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.


All $\mathbf{H}$–matrices contain fewer ones than zeros. This is a characteristic of the so-called low–density parity–check codes  (short:  $\rm LDPC$ codes). In the case of LDPC codes relevant to practice, however, the share of ones is still significantly lower than in these examples.

Furthermore, note for the exercise:

  • A  $(n, \ k)$–block code is systematic if the first  $k$  bits of the code word  $\underline{x}$  contains the information word  $\underline{u}$ . With the code word definition  $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$  the parity-check matrix  $\mathbf{H}$  must then end with a  $k × k$ diagonal matrix.
  • regular code  (with respect to LDPC application) exists, if the Hamming–weight of all rows   ⇒   $w_{\rm Z}$ and the Hamming weight of all columns   ⇒   $w_{\rm S}$ are equal in each case. Otherwise, one speaks of an  irregular LDPC code.
  • The parity-check matrix  $\mathbf{H}$  of a conventional linear  $(n, \ k)$ block code consists of exactly  $m = n - k$  rows and  $n$  columns. For LDPC codes, on the other hand, the requirement is   $m ≥ n - k$. The equal sign is true if the  $m$  parity-check equations are statistically independent.
  • From the parity-check matrix  $\mathbf{H}$  a lower bound for the code rate  $R$  can be given:
$$R \ge 1 - \frac{{\rm E}[w_{\rm S}]}{{\rm E}[w_{\rm Z}]} \hspace{0.5cm}{\rm mit}\hspace{0.5cm} {\rm E}[w_{\rm S}] =\frac{1}{n} \cdot \sum_{i = 1}^{n}w_{\rm S}(i) \hspace{0.5cm}{\rm und}\hspace{0.5cm} {\rm E}[w_{\rm Z}] =\frac{1}{m} \cdot \sum_{j = 1}^{ m}w_{\rm Z}(j) \hspace{0.05cm}.$$
  • This equation applies equally to regular and irregular LDPC–codes, where the regular codes  ${\rm E}[w_{\rm S}] = w_{\rm S}$  and  ${\rm E}[w_{\rm Z}] = w_{\rm Z}$  can be considered.





Hints:


Questions

1

Which parity-check matrix describes the given product code according to the sketch above?

$\mathbf{H}_1$  given  $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$.
$\mathbf{H}_1$  given  $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.
$\mathbf{H}_2$  given  $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.
$\mathbf{H}_3$  given  $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.

2

For the remaining subtasks we shall always assume  $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$.
Which statements are valid for the parity-check matrix  $\mathbf{H}_1$?

The code is systematic.
The code is regular.
For the code rate holds  $R > 1/2$.
For the code rate holds  $R = 1/2$.

3

What statements hold for the parity-check matrix  $\mathbf{H}_3$?

No relation between  $\mathbf{H}_1$  and  $\mathbf{H}_3$  is discernible.
The  $\mathbf{H}_3$–rows are linear combinations of two  $\mathbf{H}_1$ ;rows each.
The four parity-check equations according to  $\mathbf{H}_3$  are linearly independent.

4

Which statements apply to the code denoted by  $\mathbf{H}_3$ ?

The code is systematic.
The code is regular.
For the code rate holds  $R ≥ 1/2$.
For the code rate holds  $R = 1/2$.


Solution

(1)  Correct are the solutions 1 and 3:

  • With the code word definition $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$, the parity-check matrix $\mathbf{H}_1$ denotes the following check equations:
$$u_1 \oplus u_2 \oplus p_1 = 0\hspace{0.05cm},\hspace{0.3cm} u_3 \oplus u_4 \oplus p_2 = 0\hspace{0.05cm},\hspace{0.3cm} u_1 \oplus u_3 \oplus p_3 = 0\hspace{0.05cm},\hspace{0.3cm} u_2 \oplus u_4 \oplus p_4 = 0\hspace{0.05cm}.$$
  • This corresponds exactly to the assumptions made above. The same result is obtained for $\mathbf{H}_2$ and the code word definition $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.


With the same code word definition $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$ the other parity-check matrices do not yield a meaningful set of equations:

  • According to parity-check matrix $\mathbf{H}_1$:
$$u_1 \oplus p_1 \oplus u_3 = 0\hspace{0.05cm},\hspace{0.3cm} u_2 \oplus p_2 \oplus p_3 = 0\hspace{0.05cm},\hspace{0.3cm} u_1 \oplus u_2 \oplus u_4 = 0\hspace{0.05cm},\hspace{0.3cm} p_1 \oplus p_2 \oplus p_4 = 0\hspace{0.05cm};$$
  • corresponding to parity-check matrix $\mathbf{H}_3$:
$$u_1 \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_2 \hspace{-0.12cm}\oplus\hspace{-0.06cm} u_3 \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_4 \hspace{-0.05cm} = \hspace{-0.05cm} 0\hspace{0.05cm},\hspace{0.15cm} u_1 \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_2 \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_3 \hspace{-0.12cm}\oplus\hspace{-0.06cm}u_4 \hspace{-0.05cm} = \hspace{-0.05cm} 0\hspace{0.05cm},\hspace{0.15cm} p_1 \hspace{-0.12cm}\oplus\hspace{-0.06cm} u_2 \hspace{-0.12cm}\oplus\hspace{-0.06cm} u_3 \hspace{-0.12cm}\oplus\hspace{-0.06cm}u_4 \hspace{-0.05cm} = \hspace{-0.05cm} 0\hspace{0.05cm},\hspace{0.15cm} p_1 \hspace{-0.12cm}\oplus\hspace{-0.06cm} u_2 \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_3 \hspace{-0.12cm}\oplus\hspace{-0.06cm} p_4 \hspace{-0.05cm} = \hspace{-0.05cm} 0\hspace{0.05cm}.$$


(2)  Correct are the proposed solutions 1 and 4:

  • The code is systematic because $\mathbf{H}_1$ ends with a $4 × 4$ diagonal matrix.
  • For a regular (LDPC) code, there should be an equal number of ones in each row and in each column.
  • The first condition is satisfied $(w_{\rm Z} = 3)$, but not the second. Rather, there is (equally often) one one or two ones per column  ⇒  ${\rm E}[w_{\rm S}] = 1.5$.
  • For an irregular code, the lower bound for the code rate is:
$$R \ge 1 - \frac{{\rm E}[w_{\rm S}]}{{\rm E}[w_{\rm Z}]} = 1 - \frac{1.5}{3} = 1/2 \hspace{0.05cm}.$$
  • Because of the given code structure ($k = 4$ information bits, $m = 4$ check bits  ⇒  $n = 8$ code bits) the code rate can also be given in the conventional form: $R = k/n$   ⇒   Correct is solution 4 in contrast to answer 3.


(3)  The $\mathbf{H}_3$–rows result from linear combinations of $\mathbf{H}_1$–rows:

  • The first $\mathbf{H}_3$–row is the sum of row 1 and row 4.
  • The second $\mathbf{H}_3$–row is the sum of row 2 and row 3.
  • The third $\mathbf{H}_3$–row is the sum of row 1 and row 3.
  • The fourth $\mathbf{H}_3$–row is the sum of row 2 and row 4.


By linear combinations, the four linearly independent equations with respect to $\mathbf{H}_1$ now become four linearly independent equations with respect to $\mathbf{H}_3$  
⇒   Therefore, the proposed solutions 2 and 3 are correct.


(4)  Here, solutions 2, 3, and 4 are correct:

  • If the code described by $\mathbf{H}_3$ were systematic, $\mathbf{H}_3$ should end with a $4 × 4$–diagonal matrix. This is not the case here.
  • The Hamming weights of all rows are equal $(w_{\rm Z} = 4)$ and also all columns each have the same Hamming weight $(w_{\rm S} = 2)$   ⇒   the code is regular.
  • This gives $R ≥ 1 - 2/4 = 1/2$ for the code rate. But since the four rows of $\mathbf{H}_3$ also describe four independent equations, the equal sign   ⇒   $R = 1/2$ also holds.