Difference between revisions of "Aufgaben:Exercise 4.11Z: Code Rate from the Parity-check Matrix"

From LNTwww
Line 2: Line 2:
  
 
[[File:P_ID3068__KC_Z_4_11_v4.png|right|frame|Given parity-check matrices]]
 
[[File:P_ID3068__KC_Z_4_11_v4.png|right|frame|Given parity-check matrices]]
In this exercise, the code rates of the codes  $\mathcal {C}_1, \, \mathcal {C}_2, \, \mathcal {C}_3$  and  $\mathcal {C}_4$  are to be determined, where the codes are given by their test matrices alone. A lower bound on the code rate  $R$  reads:
+
In this exercise,  the code rates of the codes  $\mathcal {C}_1, \, \mathcal {C}_2, \, \mathcal {C}_3$  and  $\mathcal {C}_4$  are to be determined,  where the codes are given by their parity-check matrices alone.  A lower bound on the code rate  $R$  reads:
:$$R \ge 1 - \frac{{\rm E}[w_{\rm S}]}{{\rm E}[w_{\rm Z}]}
+
:$$R \ge 1 - \frac{{\rm E}[w_{\rm C}]}{{\rm E}[w_{\rm R}]}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
If the  $m$  parity-check equations of all matrix–rows are linearly independent, then the equal sign in the above inequality holds.
+
If the  $m$  parity-check equations of all matrix rows are linearly independent,  then the equal sign in the above inequality holds.
  
 
Used here is the following nomenclature:
 
Used here is the following nomenclature:
* $w_{\rm Z}(j)$  with  $1 ≤ j ≤ m$  being the  [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"Hamming weight"]]  of  $j$th row of the parity-check matrix.
+
* $w_{\rm R}(j)$&nbsp; with&nbsp; $1 &#8804; j &#8804; m$&nbsp; being the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"Hamming weight"]]&nbsp; of&nbsp; $j$<sub>th</sub>&nbsp; row of&nbsp; $\mathbf{H}$&nbsp;.&nbsp; By expectation value formation results:
* By <i>expectation value formation</i> results:
+
:$${\rm E}[w_{\rm R}] =\frac{1}{m} \cdot  \sum_{j = 1}^{m}
:$${\rm E}[w_{\rm Z}] =\frac{1}{m} \cdot  \sum_{j = 1}^{m}
+
w_{\rm R}(j)\hspace{0.05cm}.$$
w_{\rm Z}(j)\hspace{0.05cm}.$$
 
 
 
* Accordingly,&nbsp; $w_{\rm S}(i)$&nbsp; with&nbsp; $1 &#8804; i &#8804; n$&nbsp; gives the Hamming weight of&nbsp; $i$th column of&nbsp; $\mathbf{H}$&nbsp; with expected value
 
:$${\rm E}[w_{\rm S}] =\frac{1}{n} \cdot  \sum_{i = 1}^{n}
 
w_{\rm S}(i)\hspace{0.05cm}.$$
 
 
 
 
 
  
 +
* Accordingly,&nbsp; $w_{\rm C}(i)$&nbsp; with&nbsp; $1 &#8804; i &#8804; n$&nbsp; gives the Hamming weight of&nbsp; $i$<sub>th</sub>&nbsp; column of&nbsp; $\mathbf{H}$&nbsp; with expected value
 +
:$${\rm E}[w_{\rm C}] =\frac{1}{n} \cdot  \sum_{i = 1}^{n}
 +
w_{\rm C}(i)\hspace{0.05cm}.$$
  
  
Line 28: Line 24:
 
Hints:  
 
Hints:  
 
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes|"Basics of Low&ndash;density Parity&ndash;check Codes"]].
 
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes|"Basics of Low&ndash;density Parity&ndash;check Codes"]].
* Reference is made in particular to the page&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes#Some_characteristics_of_LDPC_codes|"Some characteristics of LDPC codes"]].
+
 
 +
* Reference is made in particular to the section&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes#Some_characteristics_of_LDPC_codes|"Some characteristics of LDPC codes"]].
  
  
Line 35: Line 32:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{$\mathbf{H}_1$&nbsp; describes a systematic code. What are its parameters?
+
{$\mathbf{H}_1$&nbsp; describes a systematic code.&nbsp;  What are its parameters?
 
|type="{}"}
 
|type="{}"}
 
$n \hspace{0.27cm} = \ ${ 7 }
 
$n \hspace{0.27cm} = \ ${ 7 }
Line 45: Line 42:
 
$R \ = \ ${ 0.571 3% }
 
$R \ = \ ${ 0.571 3% }
  
{What is the code rate of the code&nbsp; $\mathcal {C}_1$&nbsp; with the parity-check matrix&nbsp; $\mathbf{H}_2$?
+
{What is the code rate of the code&nbsp; $\mathcal {C}_2$&nbsp; with the parity-check matrix&nbsp; $\mathbf{H}_2$?
 
|type="{}"}
 
|type="{}"}
 
$R \ = \ ${ 0.571 3% }
 
$R \ = \ ${ 0.571 3% }
  
{What is the code rate of the code&nbsp; $\mathcal {C}_1$&nbsp; with the parity-check matrix&nbsp; $\mathbf{H}_3$?
+
{What is the code rate of the code&nbsp; $\mathcal {C}_3$&nbsp; with the parity-check matrix&nbsp; $\mathbf{H}_3$?
 
|type="{}"}
 
|type="{}"}
 
$R \ = \ ${ 0.571 3% }
 
$R \ = \ ${ 0.571 3% }
  
{What is the code rate of the code&nbsp; $\mathcal {C}_1$&nbsp; with the parity-check matrix&nbsp; $\mathbf{H}_4$?
+
{What is the code rate of the code&nbsp; $\mathcal {C}_4$&nbsp; with the parity-check matrix&nbsp; $\mathbf{H}_4$?
 
|type="{}"}
 
|type="{}"}
 
$R \ = \ ${ 0.5 3% }
 
$R \ = \ ${ 0.5 3% }

Revision as of 12:39, 17 December 2022

Given parity-check matrices

In this exercise,  the code rates of the codes  $\mathcal {C}_1, \, \mathcal {C}_2, \, \mathcal {C}_3$  and  $\mathcal {C}_4$  are to be determined,  where the codes are given by their parity-check matrices alone.  A lower bound on the code rate  $R$  reads:

$$R \ge 1 - \frac{{\rm E}[w_{\rm C}]}{{\rm E}[w_{\rm R}]} \hspace{0.05cm}.$$

If the  $m$  parity-check equations of all matrix rows are linearly independent,  then the equal sign in the above inequality holds.

Used here is the following nomenclature:

  • $w_{\rm R}(j)$  with  $1 ≤ j ≤ m$  being the  "Hamming weight"  of  $j$th  row of  $\mathbf{H}$ .  By expectation value formation results:
$${\rm E}[w_{\rm R}] =\frac{1}{m} \cdot \sum_{j = 1}^{m} w_{\rm R}(j)\hspace{0.05cm}.$$
  • Accordingly,  $w_{\rm C}(i)$  with  $1 ≤ i ≤ n$  gives the Hamming weight of  $i$th  column of  $\mathbf{H}$  with expected value
$${\rm E}[w_{\rm C}] =\frac{1}{n} \cdot \sum_{i = 1}^{n} w_{\rm C}(i)\hspace{0.05cm}.$$




Hints:



Questions

1

$\mathbf{H}_1$  describes a systematic code.  What are its parameters?

$n \hspace{0.27cm} = \ $

$k \hspace{0.3cm} = \ $

$m \hspace{0.15cm} = \ $

2

What is the code rate of the code  $\mathcal {C}_1$  with the parity-check matrix  $\mathbf{H}_1$?

$R \ = \ $

3

What is the code rate of the code  $\mathcal {C}_2$  with the parity-check matrix  $\mathbf{H}_2$?

$R \ = \ $

4

What is the code rate of the code  $\mathcal {C}_3$  with the parity-check matrix  $\mathbf{H}_3$?

$R \ = \ $

5

What is the code rate of the code  $\mathcal {C}_4$  with the parity-check matrix  $\mathbf{H}_4$?

$R \ = \ $


Solution

(1)  The matrix $\mathbf{H}_1$ ends with a $3 × 3$–diagonal matrix.

  • This is the characteristic of a systematic code with $\underline{m = 3}$ parity-check equations.
  • The code length is $\underline{n = 7}$.
  • Thus, a codeword contains $\underline{k = 4}$ information bits.


Note: This is the "systematic (7, 4, 3)–Hamming code".


(2)  The code rate of the (7, 4, 3)–Hamming–code is $\underline{R = 4/7 = 0.571}$.

  • The Hamming weight for all $m = 3$ rows is $w_{\rm Z} = 4$ and for the mean Hamming–weight over all columns holds:
$${\rm E}[w_{\rm S}] =\frac{1}{n} \cdot \sum_{j = 1}^{ n} w_{\rm S}(j) = 1/7 \cdot [2 + 3 + 2+2 + 1+1 +1] = 12/7 \hspace{0.05cm}.$$
  • This applies to the specified lower bound of the code rate:
$$R \ge 1 - \frac{{\rm E}[w_{\rm S}]}{w_{\rm Z}} = 1 - \frac{12/7}{4}\hspace{0.15cm} \underline{= 4/7 \approx 0.571}\hspace{0.05cm}.$$
  • This means: the actual code rate is equal to the lower bound   ⇒   the $m = 3$ parity-check equations of $\mathbf{H}_1$ are linearly independent.


(3)  The first row of $\mathbf{H}_2$ is the sum of the first row $(z_1)$ and the second row $(z_2)$ of $\mathbf{H}_1$.

  • The second row is equal to $z_2 + z_3$ and the third row is $z_1 + z_3$.
  • This is the identical code  ⇒  rate $\underline{R = 4/7 = 0.571}$.
  • Further,  $w_{\rm Z} = 4$  and  ${\rm E}[w_{\rm S}] = 1/7 \cdot [0 + 6 \cdot 2] = 12/7$.


(4)  For this code with  $n = 7$  (column count) and  $m = 4$  (row count) holds:

$$w_{\rm Z} = 4\hspace{0.05cm},\hspace{0.3cm} {\rm E}[w_{\rm S}] =\frac{1}{n} \cdot \sum_{j = 1}^{ n}w_{\rm S}(j) = 1/7 \cdot [3 + 1 + 2 +3+2 + 2+3] = 16/7\hspace{0.3cm} \Rightarrow \hspace{0.3cm} R \ge 1 - \frac{16/7}{4}= 3/7 \hspace{0.05cm}.$$

The equal sign would only apply to linearly independent parity-check equations, which is not the case here:

  • The third row of $\mathbf{H}_3$ was taken from $\mathbf{H}_1$.
  • If one deletes this row, $\mathbf{H}_3 = \mathbf{H}_2$ and therefore also holds: $\ \underline{R = 4/7 = 0.571}$.


(5)  Here  $n = 7$  and  $m = 4$, as well as

$${\rm E}[w_{\rm S}] \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1/8 \cdot [4 + 3 + 4 + 3 + 3+2 + 2+2] = 23/8\hspace{0.05cm},\hspace{0.8cm} {\rm E}[w_{\rm Z}] \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1/4 \cdot [8 + 5 + 5+5] = 23/4$$
$$\Rightarrow \hspace{0.3cm}R \ge 1 - \frac{{\rm E}[w_{\rm S}]}{{\rm E}[w_{\rm Z}]} = 1 - \frac{23/8}{23/4} = 1/2 \hspace{0.05cm}.$$
  • Since all four equations are linearly independent, the code rate is equal to the lower bound: $\underline{R = 1/2}$.


Hint:   This is the "extended (8, 4, 4) Hamming code".