Difference between revisions of "Aufgaben:Exercise 4.13: Decoding LDPC Codes"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Grundlegendes zu den Low–density Parity–check Codes}}
+
{{quiz-Header|Buchseite=Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes}}
  
[[File:P_ID3083__KC_A_4_13_v1.png|right|frame|Gegebene LDPC–Prüfmatrix]]
+
[[File:P_ID3083__KC_A_4_13_v1.png|right|frame|Given LDPC parity-check matrix]]
Die Aufgabe behandelt die  [[Channel_Coding/Grundlegendes_zu_den_Low–density_Parity–check_Codes#Iterative_Decodierung_von_LDPC.E2.80.93Codes|Iterative Decodierung von LDPC–Codes]]  gemäß dem  ''Message–passing Algorithmus''.
+
The exercise deals with  [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes#Iterative_decoding_of_LDPC_codes|"Iterative decoding of LDPC–codes"]]  according to the  ''Message passing algorithm''.
  
Ausgangspunkt ist die dargestellte  $9 &times 12$–Prüfmatrix  $\mathbf{H}$, die zu Beginn der Aufgabe als Tanner–Graph dargestellt werden soll. Dabei ist anzumerken:
+
The starting point is the presented  $9 &times 12$–parity-check matrix  $\mathbf{H}$, which is to be represented as a Tanner–graph at the beginning of the exercise. It should be noted that:
* Die&nbsp; <i>Variable Nodes</i>&nbsp; (abgekürzt&nbsp; $\rm VNs$)&nbsp; $V_i$&nbsp; bezeichnen die&nbsp; $n$&nbsp; Codewortbits.
+
* The&nbsp; <i>variable nodes</i>&nbsp; (abbreviated&nbsp; $\rm VNs$)&nbsp; $V_i$&nbsp; denote the&nbsp; $n$&nbsp; codeword bits.
* Die&nbsp; <i>Check Nodes</i>&nbsp; (abgekürzt&nbsp; $\rm CNs$)&nbsp; $C_j$&nbsp; stehen für die&nbsp; $m$&nbsp; Prüfgleichungen.
+
* The&nbsp; <i>check nodes</i>&nbsp; (abbreviated&nbsp; $\rm CNs$)&nbsp; $C_j$&nbsp; represent the&nbsp; $m$&nbsp; parity-check equations.
* Eine Verbindung zwischen&nbsp; $V_i$&nbsp; und&nbsp; $C_j$&nbsp; zeigt an, dass das Matrixelement&nbsp; $h_{j,\hspace{0.05cm} i}$&nbsp; der Prüfmatrix&nbsp; $\mathbf{H}$&nbsp; $($in Zeile&nbsp; $j$, Spalte&nbsp; $i)$&nbsp; gleich&nbsp; $1$&nbsp; ist. Für&nbsp; $h_{j,\hspace{0.05cm}i} = 0$&nbsp; gibt es keine Verbindung zwischen&nbsp; $V_i$&nbsp; und&nbsp; $C_j$.
+
* A connection between&nbsp; $V_i$&nbsp; and&nbsp; $C_j$&nbsp; indicates that the matrix element&nbsp; $h_{j,\hspace{0.05cm} i}$&nbsp; of the parity-check matrix&nbsp; $\mathbf{H}$&nbsp; $($in row&nbsp; $j$, column&nbsp; $i)$&nbsp; is equal&nbsp; $1$&nbsp;. For&nbsp; $h_{j,\hspace{0.05cm}i} = 0$&nbsp; there is no connection between&nbsp; $V_i$&nbsp; and&nbsp; $C_j$.
* Als die&nbsp; <i>Nachbarn</i>&nbsp; $N(V_i)$&nbsp; von&nbsp; $V_i$&nbsp; bezeichnet man die Menge aller&nbsp; <i>Check Nodes</i>&nbsp; $C_j$, die mit&nbsp; $V_i$&nbsp; im Tanner&ndash;Graphen verbunden sind. Entsprechend gehören zu&nbsp; $N(C_j)$&nbsp; alle <i>Variable Nodes</i>&nbsp; $V_i$&nbsp; mit einer Verbindung zu&nbsp; $C_j$.
+
* The&nbsp; <i>neighbors</i>&nbsp; $N(V_i)$&nbsp; of&nbsp; $V_i$&nbsp; is called the set of all&nbsp; check nodes&nbsp; $C_j$ connected to&nbsp; $V_i$&nbsp; in the Tanner ;graph. Correspondingly, to&nbsp; $N(C_j)$&nbsp; belong all variable nodes&nbsp; $V_i$&nbsp; with a connection to&nbsp; $C_j$.
  
  
Die Decodierung erfolgt abwechselnd bezüglich
+
The decoding is performed alternately with respect to
* den&nbsp; <i>Variable Nodes</i> &nbsp; &#8658; &nbsp; <i>Variable Nodes Decoder</i> (VND), und
+
* den&nbsp; <i>variable nodes</i> &nbsp; &#8658; &nbsp; variable nodes decoder (VND), and
* den&nbsp; <i>Check Nodes</i> &nbsp; &#8658; &nbsp; <i>Check Nodes Decoder</i> (CND).
+
* the&nbsp; <i>check nodes</i> &nbsp; &#8658; &nbsp; check nodes decoder (CND).
  
  
Hierauf wird in den Teilaufgaben '''(5)''' und '''(6)''' Bezug genommen.
+
This is referred to in subtasks '''(5)''' and '''(6)''''.
  
  
  
  
''Hinweise:''
+
Hints:
* Die Aufgabe gehört zum Kapitel&nbsp; [[Channel_Coding/Grundlegendes_zu_den_Low%E2%80%93density_Parity%E2%80%93check_Codes| Grundlegendes zu den Low&ndash;density Parity&ndash;check Codes]].
+
*The exercise belongs to the chapter&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes| Basic information about Low&ndash;density Parity&ndash;check Codes]].
*Bezug genommen wird insbesondere auf die Seite&nbsp; [[Channel_Coding/Grundlegendes_zu_den_Low–density_Parity–check_Codes#Iterative_Decodierung_von_LDPC.E2.80.93Codes|Iterative Decodierung von LDPC&ndash;Codes]].  
+
*Reference is made in particular to the page&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes#Iterative_decoding_of_LDPC_codes|Iterative decoding of LDPC codes]].  
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie viele&nbsp; <i>Variable Nodes</i> $(I_{\rm VN})$&nbsp; und&nbsp; <i>Check Nodes</i> $(I_{\rm CN})$&nbsp; sind zu berücksichtigen?
+
{How many&nbsp; <i>variable nodes</i> $(I_{\rm VN})$&nbsp; and&nbsp; <i>check nodes</i> $(I_{\rm CN})$&nbsp; are to be considered?
 
|type="{}"}
 
|type="{}"}
 
$I_{\rm VN} \ = \ ${ 12 }  
 
$I_{\rm VN} \ = \ ${ 12 }  
 
$I_{\rm CN} \ = \ ${ 9 }
 
$I_{\rm CN} \ = \ ${ 9 }
  
{Welche der folgenden&nbsp; <i>Check Nodes</i>&nbsp; und&nbsp; <i>Variable Nodes</i>&nbsp; sind verbunden?
+
{Which of the following&nbsp; <i>check nodes</i>&nbsp; and&nbsp; <i>variable nodes</i>&nbsp; are connected?
 
|type="[]"}
 
|type="[]"}
+ $C_4$&nbsp; und &nbsp;$V_6$.
+
+ $C_4$&nbsp; and &nbsp;$V_6$.
+ $C_5$&nbsp; und &nbsp;$V_5$.
+
+ $C_5$&nbsp; and &nbsp;$V_5$.
- $C_6$&nbsp; und &nbsp;$V_4$.
+
- $C_6$&nbsp; and &nbsp;$V_4$.
- $C_6$&nbsp; und &nbsp;$V_i$&nbsp; für &nbsp;$i > 9$.
+
- $C_6$&nbsp; and &nbsp;$V_i$&nbsp; for &nbsp;$i > 9$.
+ $C_j$&nbsp; und &nbsp;$V_{j-1}$&nbsp; für&nbsp; $j > 6$.
+
+ $C_j$&nbsp; and &nbsp;$V_{j-1}$&nbsp; for&nbsp; $j > 6$.
  
{Welche Aussagen treffen bezüglich der Nachbarn&nbsp; $N(V_i)$&nbsp; und&nbsp; $N(C_j)$&nbsp; zu?
+
{Which statements are true regarding neighbors&nbsp; $N(V_i)$&nbsp; and&nbsp; $N(C_j)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
- $N(V_1) = \{C_1, \ C_2, \ C_3, \ C_4\}$,
 
- $N(V_1) = \{C_1, \ C_2, \ C_3, \ C_4\}$,
Line 50: Line 50:
 
- $N(C_9) = \{V_3, \ V_5, \ V_7\}$.
 
- $N(C_9) = \{V_3, \ V_5, \ V_7\}$.
  
{Welche Aussagen treffen für den&nbsp; <i>Variable Node Decoder</i>&nbsp; (VND) zu?
+
{Which statements are true for the&nbsp; <i>variable node decoder</i>&nbsp; (VND)?
 
|type="[]"}
 
|type="[]"}
+ Zu Beginn (Iteration 0) werden die&nbsp; $L$&ndash;Werte der Knoten&nbsp; $V_1, \hspace{0.05cm} \text{...} \hspace{0.05cm}, \ V_n$&nbsp; entsprechend den Kanaleingangswerten&nbsp; $y_i$&nbsp; vorbelegt.
+
+ At the beginning (iteration 0) the&nbsp; $L$ values of the nodes&nbsp; $V_1, \hspace{0.05cm} \text{...} \hspace{0.05cm}, \ V_n$&nbsp; corresponding to the channel input values&nbsp; $y_i$&nbsp; preassigned.
+ Für den VND stellt&nbsp; $L(C_j &#8594; V_i)$&nbsp; Apriori&ndash;Information dar.
+
+ For the VND represents&nbsp; $L(C_j &#8594; V_i)$&nbsp; apriori&ndash;information.
- Es gibt Analogien zwischen dem&nbsp; <i>Variable Node Decoder</i>&nbsp; und der Decodierung eines <i>Single Parity&ndash;check Codes</i>.
+
- There are analogies between the&nbsp; <i>variable node decoder</i>&nbsp; and the decoding of a <i>single parity&ndash;check code</i>.
  
{Welche Aussagen treffen für den&nbsp; <i>Check Node Decoder</i>&nbsp; (CND) zu?
+
{Which statements are true for the&nbsp; <i>Check Node Decoder</i>&nbsp; (CND)?
 
|type="[]"}
 
|type="[]"}
- Der CND liefert am Ende die gewünschten Aposteriori&ndash;$L$&ndash;Werte.  
+
- The CND returns the desired a posteriori&ndash;$L$&ndash;values at the end.  
- Für den CND stellt&nbsp; $L(C_j &#8594; V_i)$&nbsp; Apriori&ndash;Information dar.
+
- For the CND represents&nbsp; $L(C_j &#8594; V_i)$&nbsp; apriori&ndash;information.
+ Es gibt Analogien zwischen dem&nbsp; <i>Check Node Decoder</i>&nbsp; und der Decodierung eines <i>Single Parity&ndash;check Codes</i>.
+
+ There are analogies between the&nbsp; <i>check node decoder</i>&nbsp; and the decoding of a <i>single parity&ndash;check code</i>.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der <i>Variable Node</i> $\rm (VN)$ $V_i$ steht für das $i$&ndash;te Codewortbit, so dass $I_{\rm VN}$ gleich der Codewortlänge $n$ ist.  
+
'''(1)'''&nbsp; The <i>variable node</i>$\rm (VN)$ $V_i$ stands for the $i$&ndash;th codeword bit, so that $I_{\rm VN}$ is equal to the codeword length $n$.  
*Aus der Spaltenzahl der $\mathbf{H}$&ndash;Matrix erkennt man $I_{\rm VN} = n \ \underline{= 12}$.  
+
*From the column number of the $\mathbf{H}$&ndash;matrix, we can see $I_{\rm VN} = n \ \underline{= 12}$.  
*Für die Menge aller <i>Variable Nodes</i> kann man somit allgemein schreiben: ${\rm VN} = \{V_1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , V_i, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ V_n\}$.  
+
*For the set of all <i>variable nodes</i>,one can thus write in general: ${\rm VN} = \{V_1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , V_i, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ V_n\}$.  
*Der <i>Check Node</i> ${\rm (CN)} \ C_j$ steht für die $j$&ndash;Prüfgleichung, und für die Menge aller <i>Check Nodes</i> gilt: ${\rm CN} = \{C_1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ C_j, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ C_m\}$.  
+
*The <i>check node</i> ${\rm (CN)} \ C_j$ represents the $j$ parity-check equation, and for the set of all <i>check nodes</i>, ${\rm CN} = \{C_1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ C_j, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ C_m\}$.  
*Aus der Zeilenzahl der $\mathbf{H}$&ndash;Matrix ergibt sich $I_{\rm CN} \ \underline {= m = 9}$.
+
*From the number of rows of the $\mathbf{H}$ matrix we get $I_{\rm CN} \ \underline {= m = 9}$.
  
  
  
'''(2)'''&nbsp; Die Ergebnisse können aus dem nachfolgend skizzierten Tanner&ndash;Graphen abgelesen werden.
+
'''(2)'''&nbsp; The results can be read from the Tanner graph sketched below.
  
[[File:P_ID3084__KC_A_4_13c_v1.png|right|frame|Tanner&ndash;Graph für das vorliegende Beispiel ]]
+
[[File:P_ID3084__KC_A_4_13c_v1.png|right|frame|Tanner graph for the present example. ]]
  
Richtig sind <u>die Lösungsvorschläge 1, 2 und 5</u>:
+
Correct are <u>the proposed solutions 1, 2 and 5</u>:
* Das Matrixelement $h_{5,\hspace{0.05cm}5}$ (Spalte 5, Zeile 5) ist $1$ &nbsp; <br>&#8658; &nbsp; rote Verbindung.
+
* The matrix element $h_{5,\hspace{0.05cm}5}$ (column 5, row 5) ist $1$ &nbsp; <br>&#8658; &nbsp; red edge.
* Das Matrixelement $h_{4,\hspace{0.05cm} 6}$ (Spalte 4, Zeile 6) ist $1$ &nbsp; <br>&#8658; &nbsp; blaue Verbindung.
+
* The matrix element $h_{4,\hspace{0.05cm} 6}$ (column 4, row 6) ist $1$ &nbsp; <br>&#8658; &nbsp; blue edge.
* Das Matrixelement $h_{6, \hspace{0.05cm}4}$ (Spalte 6, Zeile 4) ist $0$ &nbsp; <br>&#8658; &nbsp; keine Verbindung.
+
* The matrix element $h_{6, \hspace{0.05cm}4}$ (column 6, row 4) ist $0$ &nbsp; <br>&#8658; &nbsp; no edge.
* Es gilt $h_{6,\hspace{0.05cm} 10} = h_{6,\hspace{0.05cm} 11} = 1$. Aber $h_{6,\hspace{0.05cm}12} = 0$ &nbsp; <br>&#8658; &nbsp; es bestehen nicht alle drei Verbindungen.
+
* $h_{6,\hspace{0.05cm} 10} = h_{6,\hspace{0.05cm} 11} = 1$. But $h_{6,\hspace{0.05cm}12} = 0$ &nbsp; <br>&#8658; &nbsp; not all three edges exist.
* Es gilt $h_{7,\hspace{0.05cm}6} = h_{8,\hspace{0.05cm}7} = h_{9,\hspace{0.05cm}8} = 1$ &nbsp; &#8658; &nbsp; grüne Verbindungen.
+
* It holds $h_{7,\hspace{0.05cm}6} = h_{8,\hspace{0.05cm}7} = h_{9,\hspace{0.05cm}8} = 1$ &nbsp; &#8658; &nbsp; green edges.
  
  
  
'''(3)'''&nbsp; Es handelt sich um einen regulären LDPC&ndash;Code mit
+
'''(3)'''&nbsp; It is a regular LDPC code with
 
* $w_{\rm Z}(j) = 4 = w_{\rm Z}$ für $1 &#8804; j &#8804; 9$,
 
* $w_{\rm Z}(j) = 4 = w_{\rm Z}$ für $1 &#8804; j &#8804; 9$,
 
* $w_{\rm S}(i) = 3 = w_{\rm S}$ für $1 &#8804; i &#8804; 12$.
 
* $w_{\rm S}(i) = 3 = w_{\rm S}$ für $1 &#8804; i &#8804; 12$.
  
  
Die <u>Antworten 2 und 3</u> sind richtig, wie aus der ersten Zeile bzw. der neunten Spalte der Prüfmatrix $\mathbf{H}$ hervorgeht. <br>Der Tanner&ndash;Graph bestätigt diese Ergebnisse:
+
The <u>answers 2 and 3</u> are correct, as can be seen from the first row and ninth column, respectively, of the parity-check matrix $\mathbf{H}$. <br>The Tanner graph confirms these results:
* Von $C_1$ gibt es Verbindungen zu $V_1, \ V_2, \ V_3$, und $V_4$.
+
* From $C_1$ there are edges to $V_1, \ V_2, \ V_3$, and $V_4$.
* Von $V_9$ gibt es Verbindungen zu $C_3, \ C_5$, und $C_7$.
+
* From $V_9$ there are edges to $C_3, \ C_5$, and $C_7$.
  
  
Die Antworten 1 und 4 können schon allein deshalb nicht richtig sein, da
+
The answers 1 and 4 cannot be correct already because
* die Nachbarschaft $N(V_i)$ eines jeden <i>Variable Nodes</i> $V_i$ genau $w_{\rm S} = 3$ Elemente beinhaltet, und
+
* the neighborhood $N(V_i)$ of each <i>variable node</i> $V_i$ contains exactly $w_{\rm S} = 3$ elements, and
* die Nachbarschaft $N(C_j)$ eines jeden <i>Check Nodes</i> $C_j$ genau $w_{\rm Z} = 4$ Elemente.
+
* the neighborhood $N(C_j)$ of each <i>check ndes</i> $C_j$ contains exactly $w_{\rm Z} = 4$ elements.
  
  
  
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 2</u>, wie aus der [[Channel_Coding/Grundlegendes_zu_den_Low%E2%80%93density_Parity%E2%80%93check_Codes#Iterative_Decodierung_von_LDPC.E2.80.93Codes|entsprechenden Theorieseite]] hervorgeht:
+
'''(4)'''&nbsp; Correct are <u>proposed solutions 1 and 2</u>, as can be seen from the [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes#Iterative_decoding_of_LDPC_codes|"corresponding theory page"]]:
* Zu Beginn der Decodierung&nbsp; $($sozusagen bei der  Iteration $I=0)$&nbsp; werden die $L$&ndash;Werte der <i>Variable Nodes</i> &nbsp;&#8658;&nbsp; $L(V_i)$ mit den Kanaleingangswerten vorbelegt.
+
* At the beginning of decoding&nbsp; $($so to speak at iteration $I=0)$&nbsp; the $L$&ndash;values of the <i>variable nodes</i> &nbsp;&#8658;&nbsp; $L(V_i)$ are preallocated with the channel input values.
* Später&nbsp; $($ab der Iteration $I = 1)$&nbsp; wird im VND das vom CND übermittelte Log&ndash;Likelihood&ndash;Verhältnis $L(C_j &#8594; V_i)$ als Apriori&ndash;Information berücksichtigt.
+
* Later&nbsp; $($from iteration $I = 1)$&nbsp; the log&ndash;likelihood&ndash;ratio $L(C_j &#8594; V_i)$ transmitted by the CND is considered in the VND as a priori information.
* Die Antwort 3 ist falsch. Richtig wäre vielmehr: Es gibt Analogien zwischen dem VND&ndash;Algorithmus und der Decodierung eines <i>Repetition Codes</i> (Wiederholungscodes).
+
* Answer 3 is wrong. Rather, the correct answer would be: there are analogies between the VND algorithm and the decoding of a <i>repetition code</i>.
  
  
  
'''(5)'''&nbsp; Richtig ist <u>nur der Lösungsvorschlag 3</u>, weil
+
'''(5)'''&nbsp; Correct is <u>only proposed solution 3</u> because.
* die endgültigen Aposteriori&ndash;$L$&ndash;Werte vom VND abgeleitet werden, nicht vom CND,
+
* the final a posteriori $L$ values are derived from the VND, not from the CND,
* der $L$&ndash;Wert $L(C_j &#8594; V_i)$ für den CND extrinsische Information darstellt, und
+
* the $L$ value $L(C_j &#8594; V_i)$ represents extrinsic information for the CND, and
* es tatsächlich Analogien zwischen dem CND&ndash;Algorithmus und der SPC&ndash;Decodierung gibt.
+
* there are indeed analogies between the CND&ndash;algorithm and SPC&ndash;decoding.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 23:09, 10 December 2022

Given LDPC parity-check matrix

The exercise deals with  "Iterative decoding of LDPC–codes"  according to the  Message passing algorithm.

The starting point is the presented  $9 × 12$–parity-check matrix  $\mathbf{H}$, which is to be represented as a Tanner–graph at the beginning of the exercise. It should be noted that:

  • The  variable nodes  (abbreviated  $\rm VNs$)  $V_i$  denote the  $n$  codeword bits.
  • The  check nodes  (abbreviated  $\rm CNs$)  $C_j$  represent the  $m$  parity-check equations.
  • A connection between  $V_i$  and  $C_j$  indicates that the matrix element  $h_{j,\hspace{0.05cm} i}$  of the parity-check matrix  $\mathbf{H}$  $($in row  $j$, column  $i)$  is equal  $1$ . For  $h_{j,\hspace{0.05cm}i} = 0$  there is no connection between  $V_i$  and  $C_j$.
  • The  neighbors  $N(V_i)$  of  $V_i$  is called the set of all  check nodes  $C_j$ connected to  $V_i$  in the Tanner ;graph. Correspondingly, to  $N(C_j)$  belong all variable nodes  $V_i$  with a connection to  $C_j$.


The decoding is performed alternately with respect to

  • den  variable nodes   ⇒   variable nodes decoder (VND), and
  • the  check nodes   ⇒   check nodes decoder (CND).


This is referred to in subtasks (5) and (6)'.



Hints:



Questions

1

How many  variable nodes $(I_{\rm VN})$  and  check nodes $(I_{\rm CN})$  are to be considered?

$I_{\rm VN} \ = \ $

$I_{\rm CN} \ = \ $

2

Which of the following  check nodes  and  variable nodes  are connected?

$C_4$  and  $V_6$.
$C_5$  and  $V_5$.
$C_6$  and  $V_4$.
$C_6$  and  $V_i$  for  $i > 9$.
$C_j$  and  $V_{j-1}$  for  $j > 6$.

3

Which statements are true regarding neighbors  $N(V_i)$  and  $N(C_j)$ ?

$N(V_1) = \{C_1, \ C_2, \ C_3, \ C_4\}$,
$N(C_1) = \{V_1, \ V_2, \ V_3, \ V_4\}$,
$N(V_9) = \{C_3, \ C_5, \, C_7\}$,
$N(C_9) = \{V_3, \ V_5, \ V_7\}$.

4

Which statements are true for the  variable node decoder  (VND)?

At the beginning (iteration 0) the  $L$ values of the nodes  $V_1, \hspace{0.05cm} \text{...} \hspace{0.05cm}, \ V_n$  corresponding to the channel input values  $y_i$  preassigned.
For the VND represents  $L(C_j → V_i)$  apriori–information.
There are analogies between the  variable node decoder  and the decoding of a single parity–check code.

5

Which statements are true for the  Check Node Decoder  (CND)?

The CND returns the desired a posteriori–$L$–values at the end.
For the CND represents  $L(C_j → V_i)$  apriori–information.
There are analogies between the  check node decoder  and the decoding of a single parity–check code.


Solution

(1)  The variable node$\rm (VN)$ $V_i$ stands for the $i$–th codeword bit, so that $I_{\rm VN}$ is equal to the codeword length $n$.

  • From the column number of the $\mathbf{H}$–matrix, we can see $I_{\rm VN} = n \ \underline{= 12}$.
  • For the set of all variable nodes,one can thus write in general: ${\rm VN} = \{V_1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , V_i, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ V_n\}$.
  • The check node ${\rm (CN)} \ C_j$ represents the $j$ parity-check equation, and for the set of all check nodes, ${\rm CN} = \{C_1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ C_j, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ C_m\}$.
  • From the number of rows of the $\mathbf{H}$ matrix we get $I_{\rm CN} \ \underline {= m = 9}$.


(2)  The results can be read from the Tanner graph sketched below.

Tanner graph for the present example.

Correct are the proposed solutions 1, 2 and 5:

  • The matrix element $h_{5,\hspace{0.05cm}5}$ (column 5, row 5) ist $1$  
    ⇒   red edge.
  • The matrix element $h_{4,\hspace{0.05cm} 6}$ (column 4, row 6) ist $1$  
    ⇒   blue edge.
  • The matrix element $h_{6, \hspace{0.05cm}4}$ (column 6, row 4) ist $0$  
    ⇒   no edge.
  • $h_{6,\hspace{0.05cm} 10} = h_{6,\hspace{0.05cm} 11} = 1$. But $h_{6,\hspace{0.05cm}12} = 0$  
    ⇒   not all three edges exist.
  • It holds $h_{7,\hspace{0.05cm}6} = h_{8,\hspace{0.05cm}7} = h_{9,\hspace{0.05cm}8} = 1$   ⇒   green edges.


(3)  It is a regular LDPC code with

  • $w_{\rm Z}(j) = 4 = w_{\rm Z}$ für $1 ≤ j ≤ 9$,
  • $w_{\rm S}(i) = 3 = w_{\rm S}$ für $1 ≤ i ≤ 12$.


The answers 2 and 3 are correct, as can be seen from the first row and ninth column, respectively, of the parity-check matrix $\mathbf{H}$.
The Tanner graph confirms these results:

  • From $C_1$ there are edges to $V_1, \ V_2, \ V_3$, and $V_4$.
  • From $V_9$ there are edges to $C_3, \ C_5$, and $C_7$.


The answers 1 and 4 cannot be correct already because

  • the neighborhood $N(V_i)$ of each variable node $V_i$ contains exactly $w_{\rm S} = 3$ elements, and
  • the neighborhood $N(C_j)$ of each check ndes $C_j$ contains exactly $w_{\rm Z} = 4$ elements.


(4)  Correct are proposed solutions 1 and 2, as can be seen from the "corresponding theory page":

  • At the beginning of decoding  $($so to speak at iteration $I=0)$  the $L$–values of the variable nodes  ⇒  $L(V_i)$ are preallocated with the channel input values.
  • Later  $($from iteration $I = 1)$  the log–likelihood–ratio $L(C_j → V_i)$ transmitted by the CND is considered in the VND as a priori information.
  • Answer 3 is wrong. Rather, the correct answer would be: there are analogies between the VND algorithm and the decoding of a repetition code.


(5)  Correct is only proposed solution 3 because.

  • the final a posteriori $L$ values are derived from the VND, not from the CND,
  • the $L$ value $L(C_j → V_i)$ represents extrinsic information for the CND, and
  • there are indeed analogies between the CND–algorithm and SPC–decoding.