Difference between revisions of "Aufgaben:Exercise 4.13: FSK Demodulation"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
 
(16 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
}}
 
}}
  
[[File:P_ID1739__Mod_A_4_12.png|right|frame|Signalverläufe der FSK–Demodulation]]
+
[[File:EN_Mod_A_4_12_v2.png|right|frame|Signal waveforms of FSK demodulation]]
Im Theorieteil wurde bereits das [[Modulationsverfahren/Nichtlineare_Modulationsverfahren#Koh.C3.A4rente_Demodulation_der_FSK| Blockschaltbild]] des kohärenten FSK–Demodulators angegeben, wobei wir in dieser Aufgabe von der unteren Systemvariante ausgehen. Rauschanteile werden hier nicht betrachtet.
+
The  [[Modulation_Methods/Nonlinear_Digital_Modulation#Coherent_demodulation_of_FSK| block diagram]]  of the coherent FSK demodulator has already been given in the theory section, but in this exercise we will assume the lower system variant. Noise components are not considered here.
  
Die rechts angegebene Grafik zeigt die Signalverläufe an verschiedenen Stellen des Blockschaltbildes, wobei jeweils drei Symbole gezeichnet sind, im Bild getrennt durch gestrichelte Linien:
+
The figure on the right shows the signal waveforms at different points of the block diagram, where three symbols are drawn in each case, separated by dashed lines:
* Oben ist das Empfangssignal $r(t)$ dargestellt, das identisch mit dem FSK–Sendesignal ist. Die höhere Frequenz $f_{+1}$ gehört zum Amplitudenkoeffizienten $a_ν = +1$, während $a_ν = –1$ mit der Frequenz $f_{–1}$ dargestellt ist. Bezogen auf die Symbolmitten $T$, $2T$, $3T$, ... liegt jeweils ein sinusförmiger Verlauf vor. Der konstante Betrag der Hüllkurve ist $s_0$.
+
* At the top, the received signal  $r(t)$  is shown, which is identical to the FSK transmitted signal. The higher frequency  $f_{+1}$  belongs to the amplitude coefficient  $a_ν = +1$, while  $a_ν = -1$  is represented with frequency  $f_{–1}$ . With respect to the symbol centers  $T$,  $2T$,  $3T$, ..., a sinusoidal curve is present in each case. The constant magnitude of the envelope is  $s_0$.
* Das mittlere Diagramm zeigt die Signale nach der Multiplikation mit den jeweiligen Sinussignalen:
+
* The middle plot shows the signals after multiplication by the respective sinusoidal signals:
 
:$$b_{\rm +1}(t)  =  r(t) \cdot 2 \cdot \sin (2 \pi \cdot f_{\rm +1} \cdot t )\hspace{0.05cm},$$
 
:$$b_{\rm +1}(t)  =  r(t) \cdot 2 \cdot \sin (2 \pi \cdot f_{\rm +1} \cdot t )\hspace{0.05cm},$$
 
:$$ b_{\rm -1}(t)  =  r(t) \cdot 2 \cdot \sin (2 \pi \cdot f_{\rm -1} \cdot t ) \hspace{0.05cm}.$$
 
:$$ b_{\rm -1}(t)  =  r(t) \cdot 2 \cdot \sin (2 \pi \cdot f_{\rm -1} \cdot t ) \hspace{0.05cm}.$$
:Das Signal $b_{+1}(t)$ im oberen Demodulatorzweig ist gelb und das Signal $b_{–1}(t)$ im unteren Zweig blau dargestellt. Der grüne Verlauf gilt entsprechend der Farbenlehre für beide Kurven. Die Signale sind gegenüber $r(t)$ niedriger als dargestellt.
+
:The signal  $b_{+1}(t)$   in the upper demodulator branch is shown in yellow and the signal   $b_{–1}(t)$  in the lower branch is shown in blue. According to the coloring scheme, the green curve applies to both curves. Relative to  $r(t)$ , the signals are lower than shown.
* Der untere Signalverlauf zeigt das Differenzsignal $b(t) = b_{+1}(t) b_{–1}(t)$. Das folgende Matched–Filter kann auch als Integrator realisiert werden. Damit ist der (normierte) Entscheidungswert für das $ν$–te Symbol wie folgt gegeben:
+
* The lower signal plot shows the difference signal  $b(t) = b_{+1}(t) - b_{–1}(t)$.  The following matched filter can also be implemented as an integrator. Thus, the (normalized) decision boundary for the  $ν$–th symbol is given as follows:
 
:$$E_{\nu}= \frac{1}{s_0} \cdot d (\nu \cdot T + T/2) = \frac{1}{s_0 \cdot T} \cdot \int_{(\nu - 1/2) T }^{(\nu + 1/2) T }\hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t \hspace{0.05cm}.$$
 
:$$E_{\nu}= \frac{1}{s_0} \cdot d (\nu \cdot T + T/2) = \frac{1}{s_0 \cdot T} \cdot \int_{(\nu - 1/2) T }^{(\nu + 1/2) T }\hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t \hspace{0.05cm}.$$
  
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Nichtlineare_digitale_Modulation|Nichtlineare digitale Modulation]].
+
 
*Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Nichtlineare_digitale_Modulation#Koh.C3.A4rente_Demodulation_der_FSK|Kohärente Demodulation der FSK]].
+
 
+
 
*Gegeben ist die trigonometrische Beziehung
+
 
 +
 
 +
''Hints:''  
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]].
 +
*Particular reference is made to the page  [[Modulation_Methods/Nonlinear_Digital_Modulation#Coherent_demodulation_of_FSK|Coherent demodulation of FSK]].
 +
* A technical hint: By enlarging the image, one can recognize the signal curves a little better.
 +
Please accept an apology on behalf of the author: blue on a black background is not great.
 +
<br> The following trigonometric relation is given:
 
:$$2 \cdot \sin(\alpha) \cdot \sin(\beta)= \cos(\alpha - \beta)- \cos(\alpha + \beta) \hspace{0.05cm}.$$
 
:$$2 \cdot \sin(\alpha) \cdot \sin(\beta)= \cos(\alpha - \beta)- \cos(\alpha + \beta) \hspace{0.05cm}.$$
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die Amplitudenkoeffizienten?
+
{What are the amplitude coefficients?
 
|type="{}"}
 
|type="{}"}
 
$a_1  \ = \ $ { 1 }  
 
$a_1  \ = \ $ { 1 }  
Line 32: Line 39:
 
$a_3  \ = \ $ { 1 }
 
$a_3  \ = \ $ { 1 }
  
{Geben Sie die beiden Frequenzen $f_{+1}$ und $f_{–1}$ an.
+
{Give the two frequencies &nbsp;$f_{+1}$&nbsp; and &nbsp;$f_{–1}$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$ f_{+1} \ = \ $ { 5 3% } $\ \cdot 1/T$
 
$ f_{+1} \ = \ $ { 5 3% } $\ \cdot 1/T$
 
$f_{–1} \hspace{0.18cm} = \ $ { 3 3% } $\ \cdot 1/T$
 
$f_{–1} \hspace{0.18cm} = \ $ { 3 3% } $\ \cdot 1/T$
  
{Welche Aussagen treffen für das Signal $b_{+1}(t)$ im ersten Zeitintervall zu?
+
{Which statements are true for the signal &nbsp;$b_{+1}(t)$&nbsp; in the first time interval?
 
|type="[]"}
 
|type="[]"}
- Das Signal beinhaltet die Frequenz $2/T$.
+
- The signal contains the frequency &nbsp;$2/T$.
- Das Signal beinhaltet die Frequenz $4/T$.
+
- The signal contains the frequency &nbsp;$4/T$.
- Das Signal beinhaltet die Frequenz $6/T$.
+
- The signal contains the frequency &nbsp;$6/T$.
- Das Signal beinhaltet die Frequenz $8/T$.
+
- The signal contains the frequency &nbsp;$8/T$.
+ Das Signal beinhaltet die Frequenz $10/T$.
+
+ The signal contains the frequency &nbsp;$10/T$.
+ Das Signal beinhaltet einen Gleichanteil.
+
+ The signal contains a DC component.
  
{Welche Aussagen treffen für das Signal $b_{–1}(t)$ im ersten Zeitintervall zu?
+
{Which statements are true for the signal &nbsp;$b_{-1}(t)$&nbsp; in the first time interval?
 
|type="[]"}
 
|type="[]"}
+ Das Signal beinhaltet die Frequenz $2/T$.
+
+ The signal contains the frequency &nbsp;$2/T$.
- Das Signal beinhaltet die Frequenz $4/T$.
+
- The signal contains the frequency &nbsp;$4/T$.
- Das Signal beinhaltet die Frequenz $6/T$.
+
- The signal contains the frequency $6/T$.
+ Das Signal beinhaltet die Frequenz $8/T$.
+
+ The signal contains the frequency &nbsp;$8/T$.
- Das Signal beinhaltet die Frequenz $10/T$.
+
- The signal contains the frequency &nbsp;$10/T$.
- Das Signal beinhaltet einen Gleichanteil.
+
- The signal contains a DC component.
  
{Welche normierten Entscheidungswerte ergeben sich für die einzelnen Symbole?
+
{What are the normalized decision values for each symbol?
 
|type="{}"}
 
|type="{}"}
 
$E_1 \hspace{0.2cm}  = \ $ { 1 }
 
$E_1 \hspace{0.2cm}  = \ $ { 1 }
Line 65: Line 72:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Im mittleren Bereich ist eine niedrigere Frequenz als in den beiden äußeren Bereichen zu erkennen:
+
'''(1)'''&nbsp; A lower frequency can be seen in the middle region than in the two outer regions:
 
:$$a_1 \hspace{0.15cm}\underline {= +1},\hspace{0.2cm}a_2 \hspace{0.15cm}\underline {= -1},\hspace{0.2cm}a_3\hspace{0.15cm}\underline { = +1} \hspace{0.05cm}.$$
 
:$$a_1 \hspace{0.15cm}\underline {= +1},\hspace{0.2cm}a_2 \hspace{0.15cm}\underline {= -1},\hspace{0.2cm}a_3\hspace{0.15cm}\underline { = +1} \hspace{0.05cm}.$$
  
'''(2)'''&nbsp; Aus der Grafik erkennt man im ersten und im letzten Zeitintervall fünf Schwingungen und im zweiten Intervall drei Schwingungen:
+
 
 +
 
 +
'''(2)'''&nbsp;From the graph, we can see five oscillations in the first and last time intervals and three in the second interval:
 
:$$f_{\rm +1} \hspace{0.15cm}\underline {= 5 \cdot 1/T},\hspace{0.2cm}f_{\rm -1}\hspace{0.15cm}\underline { = 3 \cdot 1/T} \hspace{0.05cm}.$$
 
:$$f_{\rm +1} \hspace{0.15cm}\underline {= 5 \cdot 1/T},\hspace{0.2cm}f_{\rm -1}\hspace{0.15cm}\underline { = 3 \cdot 1/T} \hspace{0.05cm}.$$
Die Trägerfrequenz ist somit $f_{\rm T} = 4/T$ und der Frequenzhub $Δf_{\rm A} = 1/T$.
+
*Thus, the carrier frequency is $f_{\rm T} = 4/T$ and the frequency deviation is $Δf_{\rm A} = 1/T$.
  
  
'''(3)'''&nbsp; In diesem Bereich gilt, wobei der erste Term das Empfangssignal $r(t)$ beschreibt und der zweite Term die im Modulator zugesetzte Schwingung:
+
 
 +
'''(3)'''&nbsp; In this range, where the first term represents the received signal $r(t)$ and the second term represents the oscillation added in the modulator:
 
:$$b_{\rm +1}(t)  =  s_0 \cdot \sin (2 \pi \cdot 5/T \cdot t )\cdot 2 \cdot \sin (2 \pi \cdot 5/T \cdot t )=
 
:$$b_{\rm +1}(t)  =  s_0 \cdot \sin (2 \pi \cdot 5/T \cdot t )\cdot 2 \cdot \sin (2 \pi \cdot 5/T \cdot t )=
   s_0 \cdot \left [ 1 - \cos (2 \pi \cdot 10/T \cdot t )\right ] \hspace{0.05cm}.$$
+
   s_0 \cdot \big [ 1 - \cos (2 \pi \cdot 10/T \cdot t )\big ] \hspace{0.05cm}.$$
Richtig sind demnach <u>die beiden letzten Lösungsvorschläge</u>.
+
*Therefore, <u>the last two answers</u> are correct.
 +
 
 +
 
  
 +
'''(4)'''&nbsp; Analogously, the lower signal  &nbsp;$b_{-1}(t)$&nbsp; in the same time interval, is characterized by:
 +
:$$b_{\rm -1}(t)  =  s_0 \cdot \sin (2 \pi \cdot 5/T \cdot t )\cdot 2 \cdot \sin (2 \pi \cdot 3/T \cdot t )=  s_0 \cdot \big [ \cos (2 \pi \cdot 2/T \cdot t ) - \cos (2 \pi \cdot 8/T \cdot t )\big ] \hspace{0.05cm}$$
 +
*<u>Answers 1 and 4</u> are correct.
  
'''(4)'''&nbsp; Für das untere Signal $b_{-1}(t)$ gilt im gleichen Zeitintervall entsprechend:
 
:$$b_{\rm -1}(t)  =  s_0 \cdot \sin (2 \pi \cdot 5/T \cdot t )\cdot 2 \cdot \sin (2 \pi \cdot 3/T \cdot t )=  s_0 \cdot \left [ \cos (2 \pi \cdot 2/T \cdot t ) - \cos (2 \pi \cdot 8/T \cdot t )\right ] \hspace{0.05cm}$$
 
Richtig sind hier <u>die Lösungsvorschläge 1 und 4</u>.
 
  
  
'''(5)'''&nbsp; Für den ersten Entscheidungswert gilt mit $b(t) = b_{+1}(t) - b_{–1}(t)$:
+
'''(5)'''&nbsp; For the first decision value with &nbsp;$b(t) = b_{+1}(t) - b_{–1}(t)$, it holds that:
 
:$$E_{1} = \frac{1}{s_0 \cdot T} \cdot \int_{T/2 }^{3T/2} b_{\rm +1} (t )\hspace{0.1cm} {\rm d}t - \frac{1}{s_0 \cdot T} \cdot \int_{T/2 }^{3T/2} b_{\rm -1} (t )\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$
 
:$$E_{1} = \frac{1}{s_0 \cdot T} \cdot \int_{T/2 }^{3T/2} b_{\rm +1} (t )\hspace{0.1cm} {\rm d}t - \frac{1}{s_0 \cdot T} \cdot \int_{T/2 }^{3T/2} b_{\rm -1} (t )\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$
*Aus dem Ergebnis der Teilaufgabe (4) erkennt man, dass das zweite Integral $0$ ergibt (Integration über Vielfache der Periodendauer von Sinusfunktionen). Das erste Integral ist gleich $s_0 · T$. Daraus folgt für den Entscheidungswert im ersten Zeitintervall:<br> $E_1\hspace{0.15cm}\underline { = +1}$. Ebenso ist $E_3\hspace{0.15cm}\underline { = +1}$.  
+
*From the result of question &nbsp; '''(4)'''&nbsp;, we can see that the second integral yields zero <br>
*Dagegen ist bei der Berechnung von $E_2$ das erste Integral 0 und das zweite hat den Wert $s_0 · T$. Somit erhält man hierfür den Wert $E_2\hspace{0.15cm}\underline { = -1}$.
+
(Integration over multiples of the period of a sinusoidal functions).  
 +
*The first integral is equal to&nbsp; $s_0 · T$.&nbsp; The decision value in the first time interval follows from this: &nbsp; $E_1\hspace{0.15cm}\underline { = +1}$.&nbsp; Similarly, &nbsp;$E_3\hspace{0.15cm}\underline { = +1}$.  
 +
*On the other hand, when calculating $E_2$, the first integral is zero and the second has the value &nbsp; $s_0 · T$.&nbsp; Thus, we obtain the value &nbsp;$E_2\hspace{0.15cm}\underline { = -1}$.
  
  
Line 96: Line 110:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.4 Nichtlineare digitale Modulation^]]
+
[[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]]

Latest revision as of 12:27, 5 April 2023

Signal waveforms of FSK demodulation

The   block diagram  of the coherent FSK demodulator has already been given in the theory section, but in this exercise we will assume the lower system variant. Noise components are not considered here.

The figure on the right shows the signal waveforms at different points of the block diagram, where three symbols are drawn in each case, separated by dashed lines:

  • At the top, the received signal  $r(t)$  is shown, which is identical to the FSK transmitted signal. The higher frequency  $f_{+1}$  belongs to the amplitude coefficient  $a_ν = +1$, while  $a_ν = -1$  is represented with frequency  $f_{–1}$ . With respect to the symbol centers  $T$,  $2T$,  $3T$, ..., a sinusoidal curve is present in each case. The constant magnitude of the envelope is  $s_0$.
  • The middle plot shows the signals after multiplication by the respective sinusoidal signals:
$$b_{\rm +1}(t) = r(t) \cdot 2 \cdot \sin (2 \pi \cdot f_{\rm +1} \cdot t )\hspace{0.05cm},$$
$$ b_{\rm -1}(t) = r(t) \cdot 2 \cdot \sin (2 \pi \cdot f_{\rm -1} \cdot t ) \hspace{0.05cm}.$$
The signal  $b_{+1}(t)$  in the upper demodulator branch is shown in yellow and the signal  $b_{–1}(t)$  in the lower branch is shown in blue. According to the coloring scheme, the green curve applies to both curves. Relative to  $r(t)$ , the signals are lower than shown.
  • The lower signal plot shows the difference signal  $b(t) = b_{+1}(t) - b_{–1}(t)$.  The following matched filter can also be implemented as an integrator. Thus, the (normalized) decision boundary for the  $ν$–th symbol is given as follows:
$$E_{\nu}= \frac{1}{s_0} \cdot d (\nu \cdot T + T/2) = \frac{1}{s_0 \cdot T} \cdot \int_{(\nu - 1/2) T }^{(\nu + 1/2) T }\hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t \hspace{0.05cm}.$$





Hints:

Please accept an apology on behalf of the author: blue on a black background is not great.
The following trigonometric relation is given:

$$2 \cdot \sin(\alpha) \cdot \sin(\beta)= \cos(\alpha - \beta)- \cos(\alpha + \beta) \hspace{0.05cm}.$$


Questions

1

What are the amplitude coefficients?

$a_1 \ = \ $

$a_2 \ = \ $

$a_3 \ = \ $

2

Give the two frequencies  $f_{+1}$  and  $f_{–1}$ .

$ f_{+1} \ = \ $

$\ \cdot 1/T$
$f_{–1} \hspace{0.18cm} = \ $

$\ \cdot 1/T$

3

Which statements are true for the signal  $b_{+1}(t)$  in the first time interval?

The signal contains the frequency  $2/T$.
The signal contains the frequency  $4/T$.
The signal contains the frequency  $6/T$.
The signal contains the frequency  $8/T$.
The signal contains the frequency  $10/T$.
The signal contains a DC component.

4

Which statements are true for the signal  $b_{-1}(t)$  in the first time interval?

The signal contains the frequency  $2/T$.
The signal contains the frequency  $4/T$.
The signal contains the frequency $6/T$.
The signal contains the frequency  $8/T$.
The signal contains the frequency  $10/T$.
The signal contains a DC component.

5

What are the normalized decision values for each symbol?

$E_1 \hspace{0.2cm} = \ $

$E_2 \hspace{0.2cm} = \ $

$E_3 \hspace{0.2cm} = \ $


Solution

(1)  A lower frequency can be seen in the middle region than in the two outer regions:

$$a_1 \hspace{0.15cm}\underline {= +1},\hspace{0.2cm}a_2 \hspace{0.15cm}\underline {= -1},\hspace{0.2cm}a_3\hspace{0.15cm}\underline { = +1} \hspace{0.05cm}.$$


(2) From the graph, we can see five oscillations in the first and last time intervals and three in the second interval:

$$f_{\rm +1} \hspace{0.15cm}\underline {= 5 \cdot 1/T},\hspace{0.2cm}f_{\rm -1}\hspace{0.15cm}\underline { = 3 \cdot 1/T} \hspace{0.05cm}.$$
  • Thus, the carrier frequency is $f_{\rm T} = 4/T$ and the frequency deviation is $Δf_{\rm A} = 1/T$.


(3)  In this range, where the first term represents the received signal $r(t)$ and the second term represents the oscillation added in the modulator:

$$b_{\rm +1}(t) = s_0 \cdot \sin (2 \pi \cdot 5/T \cdot t )\cdot 2 \cdot \sin (2 \pi \cdot 5/T \cdot t )= s_0 \cdot \big [ 1 - \cos (2 \pi \cdot 10/T \cdot t )\big ] \hspace{0.05cm}.$$
  • Therefore, the last two answers are correct.


(4)  Analogously, the lower signal  $b_{-1}(t)$  in the same time interval, is characterized by:

$$b_{\rm -1}(t) = s_0 \cdot \sin (2 \pi \cdot 5/T \cdot t )\cdot 2 \cdot \sin (2 \pi \cdot 3/T \cdot t )= s_0 \cdot \big [ \cos (2 \pi \cdot 2/T \cdot t ) - \cos (2 \pi \cdot 8/T \cdot t )\big ] \hspace{0.05cm}$$
  • Answers 1 and 4 are correct.


(5)  For the first decision value with  $b(t) = b_{+1}(t) - b_{–1}(t)$, it holds that:

$$E_{1} = \frac{1}{s_0 \cdot T} \cdot \int_{T/2 }^{3T/2} b_{\rm +1} (t )\hspace{0.1cm} {\rm d}t - \frac{1}{s_0 \cdot T} \cdot \int_{T/2 }^{3T/2} b_{\rm -1} (t )\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$
  • From the result of question   (4) , we can see that the second integral yields zero

(Integration over multiples of the period of a sinusoidal functions).

  • The first integral is equal to  $s_0 · T$.  The decision value in the first time interval follows from this:   $E_1\hspace{0.15cm}\underline { = +1}$.  Similarly,  $E_3\hspace{0.15cm}\underline { = +1}$.
  • On the other hand, when calculating $E_2$, the first integral is zero and the second has the value   $s_0 · T$.  Thus, we obtain the value  $E_2\hspace{0.15cm}\underline { = -1}$.