Difference between revisions of "Aufgaben:Exercise 4.13Z: AMI Code"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Stochastische Signaltheorie/Leistungsdichtespektrum (LDS) }} right| :Zur Spektralanpassung (Formung…“)
 
 
(20 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Leistungsdichtespektrum (LDS)
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Power-Spectral_Density
 
}}
 
}}
  
[[File:P_ID427__Sto_Z_4_13.png|right|]]
+
[[File:P_ID427__Sto_Z_4_13.png|right|frame|Auto-correlation functions at the input and output of AMI coding]]
:Zur Spektralanpassung (Formung) eines Digitalsignals an die Eigenschaften des Kanals verwendet man so genannte <i>Pseudotern&auml;rcodes</i>. Bei diesen Codes wird die bin&auml;re Quellensymbolfolge &#9001;<i>q<sub>&nu;</sub></i>&#9002; nach einer festen Vorschrift in eine Folge &#9001;<i>c<sub>&nu;</sub></i>&#9002; von Tern&auml;rsymbolen umgesetzt:
+
For spectral adaptation&nbsp; (shaping)&nbsp; of a digital signal to the characteristics of the channel,&nbsp; one uses so-called&nbsp; "pseudo-ternary codes".&nbsp; With these codes,&nbsp; the binary source symbol sequence&nbsp; $\langle q_\nu \rangle$&nbsp; is converted to a sequence&nbsp; $\langle c_\nu \rangle$&nbsp; of ternary symbols according to a fixed rule:
 
:$$q_{\nu} \in \{ -1,\hspace{0.1cm} +1 \} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_{\nu} \in \{ -1, \hspace{0.1cm}0, \hspace{0.1cm}+1 \} .$$
 
:$$q_{\nu} \in \{ -1,\hspace{0.1cm} +1 \} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_{\nu} \in \{ -1, \hspace{0.1cm}0, \hspace{0.1cm}+1 \} .$$
  
:Der bekannteste Vertreter der Pseudotern&auml;rcodes ist der AMI-Code (von <i>Alternate Mark Inversion</i>). Hier wird der Bin&auml;rwert <i>q<sub>&nu;</sub></i> = &ndash;1 stets auf <i>c<sub>&nu;</sub></i> = 0 abgebildet, w&auml;hrend <i>q<sub>&nu;</sub></i> = +1 abwechselnd (alternierend) durch die Tern&auml;rwerte <i>c<sub>&nu;</sub></i> = +1 und <i>c<sub>&nu;</sub></i> = &ndash;1 dargestellt wird. Vereinbarungsgemäß wird beim ersten Auftreten von <i>q<sub>&nu;</sub></i> = +1 das Tern&auml;rsymbol <i>c<sub>&nu;</sub></i> = +1 ausgew&auml;hlt.
+
The best known representative of this code class is the AMI code&nbsp; (from&nbsp; "Alternate Mark Inversion").&nbsp; Here
 +
*the binary value&nbsp; $q_\nu = -1$&nbsp; is always mapped to&nbsp; $c_\nu = 0$&nbsp;,
 +
*while&nbsp; $q_\nu = +1$&nbsp; is alternately represented by the ternary values&nbsp; $c_\nu = +1$&nbsp; and&nbsp; $c_\nu = -1$.  
  
:Weiter wird vorausgesetzt, dass die zwei m&ouml;glichen Quellensymbole jeweils gleichwahrscheinlich sind und die Quellensymbolfolge &#9001;<i>q<sub>&nu;</sub></i>&#9002; keine inneren statistischen Bindungen aufweist. Somit sind alle diskreten AKF-Werte gleich 0 mit Ausnahme von <i>&phi;<sub>q</sub></i>(<i>k</i> = 0):
 
$$\varphi_q ( k \cdot T) = 0 \hspace{0.5cm} {\rm f alls} \hspace{0.5cm} k \not= 0.$$
 
  
:<i>T</i> bezeichnet den Abstand der Quellen&ndash; bzw. Codesymbole. Verwenden Sie den Wert <i>T</i> = 1 &mu;s.
+
By convention,&nbsp; the ternary symbol&nbsp; $c_\nu = +1$&nbsp; shall be selected at the first occurrence of&nbsp; $q_\nu = +1$&nbsp;.
  
:Das Bild zeigt die gegebenen Autokorrelationsfunktionen. Bitte beachten Sie:
+
It is further assumed that
 +
*the two possible source symbols are each equally probable and
 +
*the source symbol sequence&nbsp; $\langle q_\nu \rangle&nbsp;$ has no internal statistical bindings.  
  
:* Rot eingezeichnet sind jeweils die zeitdiskreten Darstellungen A{<i>&phi;<sub>q</sub></i>(<i>&tau;</i>)} und A{<i>&phi;<sub>c</sub></i>(<i>&tau;</i>)} der Autokorrelationsfunktionen, jeweils mit dem Bezugswert <i>T</i>.
 
  
:* Die blau dargestellten Funktionen zeigen die zeitkontinuierlichen Verläufe <i>&phi;<sub>q</sub></i>(<i>&tau;</i>) und <i>&phi;<sub>c</sub></i>(<i>&tau;</i>) der AKF, wobei Rechtecksignale vorausgesetzt sind.
+
Thus,&nbsp; all discrete ACF values are zero except&nbsp; $\varphi_q(k=0)$:
 +
:$$\varphi_q ( k \cdot T) = 0 \hspace{0.5cm} {\rm if} \hspace{0.5cm} k \not= 0.$$
  
:<b>Hinweis:</b> Die Aufgabe bezieht sich auf die Seite Numerische Ermittlung des LDS im Kapitel 4.5. Benutzen Sie die folgende Fourierkorrespondenz
+
Here&nbsp; $T$&nbsp; denotes the time distance between the source symbols.  Use&nbsp; $T = 1 \hspace{0.05cm} \rm &micro; s$. The code symbols have the same spacing.
 +
 
 +
The graphic shows the given auto-correlation functions.&nbsp; Please note:
 +
 
 +
* In red are respectively the discrete-time representations&nbsp; ${\rm A} \{ \varphi_q(\tau) \}$&nbsp; and&nbsp; ${\rm A} \{ \varphi_c(\tau) \}$&nbsp; of the auto-correlation functions,&nbsp; each with the reference value&nbsp; $T$.
 +
* The functions shown in blue indicate the continuous-time progressions&nbsp; $\varphi_q(\tau)$&nbsp; and&nbsp; $\varphi_c(\tau)$&nbsp; of the ACF,&nbsp; assuming square-wave pulses.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:  
 +
*This exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density|Power-Spectral Density]].
 +
*Reference is also made to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]]&nbsp; as well as to the page&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density#Numerical_PSD_determination|Numerical PSD determination]].
 +
*Use the following Fourier correspondence, where&nbsp; ${\rm \Delta} (t)$&nbsp; denotes  a triangular pulse symmetric about&nbsp; $t = 0$&nbsp; with&nbsp; ${\rm \Delta} (t= 0) = 1$&nbsp; and&nbsp; ${\rm \Delta} (t) = 0$&nbsp; for&nbsp; $|t| \ge T$: 
 
:$${\rm \Delta} (t) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} T \cdot {\rm si}^2 ( \pi f T).$$
 
:$${\rm \Delta} (t) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} T \cdot {\rm si}^2 ( \pi f T).$$
  
:&Delta;(<i>t</i>) bezeichnet einen um <i>t</i> = 0 symmetrischen Dreieckimpuls mit &Delta;(0) = 1 und &Delta;(<i>t</i>) = 0 f&uuml;r |<i>t</i>| &#8805; <i>T</i>.
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie gro&szlig; ist der diskrete AKF-Wert der Quellensymbole f&uuml;r <i>k</i> = 0?
+
{What is the discrete ACF value of the source symbols for&nbsp; $k = 0$?
 
|type="{}"}
 
|type="{}"}
&phi;<sub>q</sub>(k = 0) = { 1 3% }
+
$\varphi_q(k=0) \ = \ $ { 1 3% }
  
  
{Welche Aussagen gelten für die LDS&ndash;Funktionen <i>&Phi;<sub>q</sub></i>(<i>f</i>) und P{<i>&Phi;<sub>q</sub></i>(<i>f</i>)}?
+
{Which statements are valid for the PSD functions&nbsp; ${\it \Phi}_q(f)$&nbsp; and&nbsp; ${\rm P} \{ {\it \Phi}_q(f) \}$?
 
|type="[]"}
 
|type="[]"}
+ P{<i>&Phi;<sub>q</sub></i>(<i>f</i>)} ist f&uuml;r alle Frequenzen eine Konstante.
+
+ ${\rm P} \{ {\it \Phi}_q(f) \}$&nbsp; is a constant for all frequencies.
- <i>&Phi;<sub>q</sub></i>(<i>f</i>) ist f&uuml;r |<i>f &middot; T</i>| < 0.5 konstant und au&szlig;erhalb 0.
+
- ${\it \Phi}_q(f)$&nbsp; is constant for&nbsp; $|f \cdot T| < 0.5$&nbsp; and outside zero.
+ <i>&Phi;<sub>q</sub></i>(<i>f</i>) verl&auml;uft si<sup>2</sup>- f&ouml;rmig.
+
+ ${\it \Phi}_q(f)$&nbsp; is&nbsp; $\rm sinc^2$-shaped.
  
  
{Die Quellensymbolfolge sei &#9001;<i>q<sub>&nu;</sub></i>&#9002; = +1, &ndash;1, +1, +1, &ndash;1, +1, +1, &ndash;1, &ndash;1, &ndash;1. Wie lauten die Codesymbole <i>c<sub>&nu;</sub></i>? Geben Sie das Codesymbol <i>c</i><sub>6</sub> ein.
+
{The source symbol sequence is&nbsp; $\langle q_\nu \rangle = \langle +1, -1, +1, +1, -1, +1, +1, -1, -1, -1 \rangle$.  
 +
<br>What are the code symbols&nbsp; $c_\nu$&nbsp;? Enter the code symbol&nbsp; $c_6$&nbsp;.
 
|type="{}"}
 
|type="{}"}
$c_6$ = { 1 3% }
+
$c_6 \ = \ $ { -1.01--0.99 }
  
  
{Wie gro&szlig; ist der quadratische Mittelwert der Codesymbolfolge &#9001;<i>c<sub>&nu;</sub></i>&#9002;.
+
{What is the discrete ACF value of the code symbols for&nbsp; $k = 0$.
 
|type="{}"}
 
|type="{}"}
&phi;<sub>c</sub>(k = 0) = { 0.5 3% }
+
$\varphi_c(k=0) \ = \ $ { 0.5 3% }
  
  
{Berechnen Sie die AKF-Werte <i>&phi;<sub>c</sub></i>(<i>k</i> = +1) und <i>&phi;<sub>c</sub></i>(<i>k</i> = &ndash;1).
+
{Calculate the ACF values&nbsp; $\varphi_c(k=+1)$&nbsp; and&nbsp; $\varphi_c(k=-1)$.
 
|type="{}"}
 
|type="{}"}
&phi;<sub>c</sub>(k = +1) = { 0.25 3% }
+
$\varphi_c(k=+1) \ = \ $ { -0.26--0.24 }
&phi;<sub>c</sub>(k = -1) = { 0.25 3% }
+
$\varphi_c(k=-1) \ = \ $ { -0.26--0.24 }
  
  
  
{Welche spektrale Leistungsdichte <i>&Phi;<sub>c</sub></i>(<i>f</i>) ergibt sich für die Frequenz <nobr><i>f</i> = 0</nobr> bzw. für <nobr><i>f</i> = 500 kHz?</nobr> <i>Hinweis:</i> F&uuml;r |<i>k</i>| &#8805; 2 sind alle AKF-Werte <i>&phi;<sub>c</sub></i>(<i>k</i>) = 0.
+
{What power-spectral density&nbsp; ${\it \Phi}_c(f)$&nbsp; results for frequencies&nbsp;$f=0$&nbsp; and&nbsp;$f = 500 \hspace{0.08cm}  \rm kHz$. &nbsp; <br>Note: &nbsp; For&nbsp; $|k| \ge 2$ &nbsp; &rArr; &nbsp; all ACF&ndash;values&nbsp; $\varphi_c(k) = 0$.
 
|type="{}"}
 
|type="{}"}
$\phi_c(f = 0)$ = { 0 3% }
+
${\it \Phi}_c(f = 0) \ = \ $ { 0. } $\ \cdot 10^{-6} \ \rm 1/Hz$
$\phi_c(f = 500 kHz)$ = { 0.405 3% } $.10^{-6}\ 1/Hz$
+
${\it \Phi}_c(f = 500 \hspace{0.08cm} \rm kHz)\ = \ $ { 0.405 3% } $\ \cdot 10^{-6} \ \rm 1/Hz$
 +
 
  
  
Line 67: Line 86:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Der diskrete AKF-Wert f&uuml;r <i>k</i> = 0 gibt den quadratischen Mittelwert (hier gleich der Varianz) der Quellensymbole an. Da <i>q<sub>&nu;</sub></i> nur die Werte &ndash;1 und +1 annehmen kann, ist <i>&phi;<sub>q</sub></i>(<i>k</i> = 0) <u>= 1</u>.
+
'''(1)'''&nbsp; The discrete ACF value for&nbsp; $k = 0$&nbsp; gives the variance of the source symbols.  
 +
*Since&nbsp; $q_\nu$&nbsp; can only take the values&nbsp; $-1$&nbsp; and&nbsp; $+1$ &nbsp; &rArr; &nbsp; $\varphi_q(k=0)\hspace{0.15cm}\underline{= 1}$.
 +
 
 +
 
  
:<b>2.</b>&nbsp;&nbsp;Die zeitdiskrete AKF und deren Fouriertransformierte lauten:
+
'''(2)'''&nbsp; Correct are <u>the proposed solutions 1 and 3</u>:
 +
*The discrete-time ACF and its Fourier transform are:
 
:$${\rm A} \{ \varphi_q ( \tau ) \} =  \varphi_q ( k = 0) \cdot T \cdot \delta (\tau) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} {\rm P} \{{\it \Phi_q}( f) \} =  \varphi_q ( k = 0) \cdot T = T.$$
 
:$${\rm A} \{ \varphi_q ( \tau ) \} =  \varphi_q ( k = 0) \cdot T \cdot \delta (\tau) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} {\rm P} \{{\it \Phi_q}( f) \} =  \varphi_q ( k = 0) \cdot T = T.$$
 +
*It is considered that&nbsp; $\varphi_q(k=0)= \sigma_q^2= 1$.&nbsp; This means: &nbsp; The periodic continuation of&nbsp; ${\rm P} \{ {\it \Phi}_q(f) \}$&nbsp; thus gives the same value for all frequencies.
 +
*In contrast, the continuous-time ACF can be represented as follows: &nbsp;
 +
:$$ \varphi_q ( \tau ) = {\rm A} \{ \varphi_q ( \tau ) \} \star ( {\rm \delta} ( \tau) / T ).$$
 +
*The associated power-spectral density&nbsp; (Fourier transform of the ACF)&nbsp; is then the product of the Fourier transforms of the two convolution terms: &nbsp;
 +
:$$ {\it \Phi_q} ( f) = {\rm P} \{ {\it \Phi_q}( f) \} \cdot {\rm sinc}^2 (f T ) = T \cdot {\rm sinc}^2 (f T ) .$$
 +
*Based on the chosen ACF interpolation&nbsp; (with straight line intercepts)&nbsp; from their samples, a&nbsp; $\rm sinc^2$-shaped PSD is obtained.
 +
*A rectangular spectrum according to the second proposed solution would only occur with&nbsp; $\rm sinc$-shaped interpolation.
  
:Es ist ber&uuml;cksichtigt, dass <i>&phi;<sub>q</sub></i>(<i>k</i> = 0) = <i>&sigma;<sub>q</sub></i><sup>2</sup> = 1 ist. Das bedeutet:  Die periodische Fortsetzung von <i>&Phi;<sub>q</sub></i>(<i>f</i>) ergibt f&uuml;r alle Frequenzen den gleichen Wert.
 
 
:Dagegen kann die zeitkontinuierliche AKF wie folgt dargestellt werden:
 
:$$ \varphi_q ( \tau ) = {\rm A} \{ \varphi_q ( \tau ) \} \star ( {\rm \Delta} ( \tau) / T ).$$
 
  
:Das dazugeh&ouml;rige Leistungsdichtespektrum (Fouriertransformierte der AKF) ist dann das Produkt der Fouriertransformierten der beiden Faltungsterme:
 
:$$ {\it \Phi_q} ( f) =  {\rm P} \{ {\it \Phi_q}( f) \} \cdot {\rm si}^2 (\pi f T ) = T \cdot {\rm si}^2 (\pi f T ) .$$
 
  
:Aufgrund der gew&auml;hlten AKF-Interpolation (mit Geradenabschnitten) aus ihren Abtastwerten ergibt sich ein si<sup>2</sup>-f&ouml;rmiges LDS. Ein rechteckförmiges Spektrum (L&ouml;sungsvorschlag 2) w&uuml;rde sich nur bei <nobr>si-f&ouml;rmiger</nobr> Interpolation einstellen. Richtig sind <u>die Lösungsvorschläge 1 und 3</u>.
+
'''(3)'''&nbsp; The coded sequence is: &nbsp; $\langle +1, \ 0, -1, +1, \ 0, -1, +1, \ 0, \ 0, \ 0 \rangle$.&nbsp; Thus the 6th code symbol is&nbsp; $c_6\hspace{0.15cm}\underline{= -1}$.
  
:<b>3.</b>&nbsp;&nbsp;Die codierte Folge lautet: +1, 0, &ndash;1, +1, 0, &ndash;1, +1, 0, 0, 0. Das 6. Symbol ist somit <u><i>c</i><sub>6</sub> = &ndash;1</u>.
 
  
:<b>4.</b>&nbsp;&nbsp;Die Auftrittswahrscheinlichkeiten der Werte &ndash;1, 0 und +1 sind 0.25, 0.5, 0.25. Daraus folgt:
+
'''(4)'''&nbsp; The occurrence probabilities of the values&nbsp; $-1$, &nbsp; $\ 0$ &nbsp; and&nbsp; $+1$&nbsp; are&nbsp; $0.25, &nbsp; 0.5, &nbsp; 0.25$.&nbsp; It follows:
 
:$$\varphi_c ( k = 0) = 0.25 \cdot (-1)^2 + 0.5 \cdot 0^2 +0.25 \cdot (+1)^2\hspace{0.15cm}\underline{ = 0.5}. $$
 
:$$\varphi_c ( k = 0) = 0.25 \cdot (-1)^2 + 0.5 \cdot 0^2 +0.25 \cdot (+1)^2\hspace{0.15cm}\underline{ = 0.5}. $$
  
:<b>5.</b>&nbsp;&nbsp;F&uuml;r den AKF-Wert bei <i>k</i> = 1 betrachtet man das Produkt <i>c<sub>&nu;</sub></i> &middot; <i>c</i><sub><i>&nu;</i>+1</sub>. Es ergeben sich die unten gezeigten Kombinationen. Einen Beitrag liefern nur Produkte <i>c<sub>&nu;</sub></i> &middot; <i>c</i><sub><i>&nu;</i>+1 </sub> &ne; 0 mit Pr[<i>c<sub>&nu;</sub></i> &#8745; <i>c</i><sub><i>&nu;</i>+1</sub>] &ne; 0:
 
:$$\varphi_c ( k = 1) = {\rm Pr} \left ( ( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \right ) \cdot (+1) \cdot (-1) \\ + {\rm Pr} \left ( ( c_{\nu} = -1) \cap ( c_{\nu + 1} = +1) \right ) \cdot (-1) \cdot (+1).$$
 
[[File:P_ID428__Sto_Z_4_13_e.png|center|]]
 
  
:In der Tabelle sind diese Terme rot gekennzeichnet. Weiter gilt:
+
'''(5)'''&nbsp; For the ACF value at&nbsp; $k = 1$&nbsp; consider the product&nbsp; $c_{\nu} \cdot c_{\nu+1}$.&nbsp; The combinations shown in the table are obtained.  
:$$ {\rm Pr} \left ( ( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \right ) = {\rm Pr} ( c_{\nu} = +1) \cdot {\rm Pr} \left ( c_{\nu + 1} = -1\hspace{0.1cm} | \hspace{0.1cm}c_{\nu } = +1) \right ) \\ = {1}/{4} \hspace{0.1cm}\cdot\hspace{0.1cm} {1}/{2}\hspace{0.1cm} =\hspace{0.1cm} {1}/{8} . $$
+
*Only products&nbsp; $c_{\nu} \cdot c_{\nu+1} \ne 0$&nbsp; with&nbsp; ${\rm Pr}\big[c_{\nu} \cdot c_{\nu+1}\big] \ne 0$:
 +
:$$\varphi_c ( k = 1) = {\rm Pr} \big [( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \big ] \cdot (+1) \cdot (-1) + {\rm Pr} \big [ ( c_{\nu} = -1) \cap ( c_{\nu + 1} = +1) \big ] \cdot (-1) \cdot (+1).$$
 +
[[File:P_ID428__Sto_Z_4_13_e.png|right|frame|For ACF calculation of AMI code]]
 +
*In the table,&nbsp; these terms are marked in red.&nbsp; Further:
 +
:$$ {\rm Pr} \big [ ( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \big ] = $$
 +
:$$ = {\rm Pr} ( c_{\nu} = +1) \cdot {\rm Pr} \left ( c_{\nu + 1} = -1 | c_{\nu } = +1) \right ) = \frac{1}{4} \cdot \frac{1}{2}= \frac{1}{8} . $$
 +
:It is assumed that&nbsp; $+1$&nbsp; occurs with probability&nbsp; $0.25$&nbsp; and is followed by&nbsp; $-1$&nbsp; only in half of the cases.
 +
*The same result is obtained for the second contribution. Thus applies:
 +
:$$\varphi_c ( k = 1) = \frac {1}{8} \cdot (+1)\cdot (-1) + \frac {1}{8} \cdot (-1)\cdot (+1) \hspace{0.15cm}\underline{= -0.25}.$$
 +
:$$\varphi_c ( k = -1) = \varphi_c ( k = 1) \hspace{0.15cm}\underline{= -0.25}.$$
 +
*To calculate&nbsp; $\varphi_c ( k = 2)$&nbsp; it is necessary to average over&nbsp; $3^3 = 27$&nbsp; combinations. The result is zero.
  
:Hierbei ist vorausgesetzt, dass „+1“ mit der Wahrscheinlichkeit 0.25 auftritt und danach „&ndash;1“ nur in der H&auml;lfte der F&auml;lle folgt. Das gleiche Ergebnis erh&auml;lt man f&uuml;r den zweiten Beitrag. Damit gilt:
 
:$$\varphi_c ( k = 1) = \frac {1}{8} \cdot (+1)\cdot (-1) + \frac {1}{8} \cdot (-1)\cdot (+1) \hspace{0.15cm}\underline{= -0.25}.$$
 
  
:F&uuml;r <u><i>k</i> = &ndash;1</u> ergibt sich aus Symmetriegr&uuml;nden <u>der gleiche Wert</u>. Zur Berechnung von <i>&phi;<sub>c</sub></i>(<i>k</i> = 2) muss &uuml;ber 3<sup>3</sup> = 27 Kombinationen gemittelt werden. Das Ergebnis ist jedoch Null.
 
  
:<b>6.</b>&nbsp;&nbsp;Die Fouriertransformierte der zeitdiskreten AKF A{<i>&phi;<sub>c</sub></i>(&tau;)} lautet:
+
'''(6)'''&nbsp; The Fourier transform of the discrete-time ACF&nbsp; ${\rm A} \{ \varphi_c(\tau) \}$&nbsp; is:
 
:$$P \{{\it \Phi_c}( f) \} =  T\cdot  \varphi_c ( k = 0) +2T \cdot \varphi_c ( k = 1) \cdot {\rm cos} ( 2 \pi f T ).$$
 
:$$P \{{\it \Phi_c}( f) \} =  T\cdot  \varphi_c ( k = 0) +2T \cdot \varphi_c ( k = 1) \cdot {\rm cos} ( 2 \pi f T ).$$
  
:Mit dem Ergebnis von 5) folgt daraus:
+
*With the result of the last subtask,&nbsp; it follows:
 
:$$P \{{\it \Phi}_c( f) \} =  \frac {T}{2} (1 - {\rm cos} ( 2 \pi f T ) )= T \cdot {\rm sin}^2 ( \pi f T ).$$
 
:$$P \{{\it \Phi}_c( f) \} =  \frac {T}{2} (1 - {\rm cos} ( 2 \pi f T ) )= T \cdot {\rm sin}^2 ( \pi f T ).$$
  
:Wie unter Punkt (b) gezeigt, gilt dann f&uuml;r das LDS &ndash; also die Fouriertransformierte von <i>&phi;<sub>c</sub></i>(&tau;):
+
*As shown in item&nbsp; '''(2)''':&nbsp; For the PSD &ndash; that is, the Fourier transform of&nbsp; $\varphi_c(\tau)$:
:$${\it \Phi_c}( f) = T \cdot {\rm sin}^2 ( \pi f T ) \cdot {\rm si}^2 ( \pi f T ) = T \cdot \frac {{\rm sin}^4 ( \pi f T )}{( \pi f T )^2 } .$$
+
:$${\it \Phi_c}( f) = T \cdot {\rm sin}^2 ( \pi f T ) \cdot {\rm sinc}^2 ( f T ) = T \cdot \frac {{\rm sin}^4 ( \pi f T )}{( \pi f T )^2 } .$$
 
+
:$$\Rightarrow \hspace{0.3cm} {\it \Phi_c}( f = 0) \hspace{0.15cm}\underline{= 0}, \hspace{0.8cm}
:Bei der <u>Frequenz <i>f</i> = 0 ergibt sich der Wert 0</u>. Für <i>f</i> = 500 kHz erh&auml;lt man <i>f</i> &middot; <i>T</i> = 0.5 und somit:
+
{\it \Phi_c}( f = {\rm500 \hspace{0.1cm}kHz}) = T \cdot \frac {{\rm sin}^4 ( \pi /2 )}{( \pi /2 )^2 } = \frac {4 T}{\pi^2} \rm \hspace{0.15cm}\underline{= 0.405 \cdot 10^{-6} \ {1}/{Hz}}.$$
:$${\it \Phi_c}( f = {\rm500 \hspace{0.1cm}kHz}) = T \cdot \frac {{\rm sin}^4 ( \pi /2 )}{( \pi /2 )^2 } = \frac {4 T}{\pi^2} \hspace{0.15cm}\underline{= 0.405 \cdot 10^{-6} {1}/{Hz}}.$$
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 117: Line 143:
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.5 Leistungsdichtespektrum (LDS)^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.5 Power-Spectral Density^]]

Latest revision as of 18:33, 25 March 2022

Auto-correlation functions at the input and output of AMI coding

For spectral adaptation  (shaping)  of a digital signal to the characteristics of the channel,  one uses so-called  "pseudo-ternary codes".  With these codes,  the binary source symbol sequence  $\langle q_\nu \rangle$  is converted to a sequence  $\langle c_\nu \rangle$  of ternary symbols according to a fixed rule:

$$q_{\nu} \in \{ -1,\hspace{0.1cm} +1 \} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_{\nu} \in \{ -1, \hspace{0.1cm}0, \hspace{0.1cm}+1 \} .$$

The best known representative of this code class is the AMI code  (from  "Alternate Mark Inversion").  Here

  • the binary value  $q_\nu = -1$  is always mapped to  $c_\nu = 0$ ,
  • while  $q_\nu = +1$  is alternately represented by the ternary values  $c_\nu = +1$  and  $c_\nu = -1$.


By convention,  the ternary symbol  $c_\nu = +1$  shall be selected at the first occurrence of  $q_\nu = +1$ .

It is further assumed that

  • the two possible source symbols are each equally probable and
  • the source symbol sequence  $\langle q_\nu \rangle $ has no internal statistical bindings.


Thus,  all discrete ACF values are zero except  $\varphi_q(k=0)$:

$$\varphi_q ( k \cdot T) = 0 \hspace{0.5cm} {\rm if} \hspace{0.5cm} k \not= 0.$$

Here  $T$  denotes the time distance between the source symbols. Use  $T = 1 \hspace{0.05cm} \rm µ s$. The code symbols have the same spacing.

The graphic shows the given auto-correlation functions.  Please note:

  • In red are respectively the discrete-time representations  ${\rm A} \{ \varphi_q(\tau) \}$  and  ${\rm A} \{ \varphi_c(\tau) \}$  of the auto-correlation functions,  each with the reference value  $T$.
  • The functions shown in blue indicate the continuous-time progressions  $\varphi_q(\tau)$  and  $\varphi_c(\tau)$  of the ACF,  assuming square-wave pulses.




Hints:

  • This exercise belongs to the chapter  Power-Spectral Density.
  • Reference is also made to the chapter  Auto-Correlation Function  as well as to the page  Numerical PSD determination.
  • Use the following Fourier correspondence, where  ${\rm \Delta} (t)$  denotes a triangular pulse symmetric about  $t = 0$  with  ${\rm \Delta} (t= 0) = 1$  and  ${\rm \Delta} (t) = 0$  for  $|t| \ge T$:
$${\rm \Delta} (t) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} T \cdot {\rm si}^2 ( \pi f T).$$


Questions

1

What is the discrete ACF value of the source symbols for  $k = 0$?

$\varphi_q(k=0) \ = \ $

2

Which statements are valid for the PSD functions  ${\it \Phi}_q(f)$  and  ${\rm P} \{ {\it \Phi}_q(f) \}$?

${\rm P} \{ {\it \Phi}_q(f) \}$  is a constant for all frequencies.
${\it \Phi}_q(f)$  is constant for  $|f \cdot T| < 0.5$  and outside zero.
${\it \Phi}_q(f)$  is  $\rm sinc^2$-shaped.

3

The source symbol sequence is  $\langle q_\nu \rangle = \langle +1, -1, +1, +1, -1, +1, +1, -1, -1, -1 \rangle$.
What are the code symbols  $c_\nu$ ? Enter the code symbol  $c_6$ .

$c_6 \ = \ $

4

What is the discrete ACF value of the code symbols for  $k = 0$.

$\varphi_c(k=0) \ = \ $

5

Calculate the ACF values  $\varphi_c(k=+1)$  and  $\varphi_c(k=-1)$.

$\varphi_c(k=+1) \ = \ $

$\varphi_c(k=-1) \ = \ $

6

What power-spectral density  ${\it \Phi}_c(f)$  results for frequencies $f=0$  and $f = 500 \hspace{0.08cm} \rm kHz$.  
Note:   For  $|k| \ge 2$   ⇒   all ACF–values  $\varphi_c(k) = 0$.

${\it \Phi}_c(f = 0) \ = \ $

$\ \cdot 10^{-6} \ \rm 1/Hz$
${\it \Phi}_c(f = 500 \hspace{0.08cm} \rm kHz)\ = \ $

$\ \cdot 10^{-6} \ \rm 1/Hz$


Solution

(1)  The discrete ACF value for  $k = 0$  gives the variance of the source symbols.

  • Since  $q_\nu$  can only take the values  $-1$  and  $+1$   ⇒   $\varphi_q(k=0)\hspace{0.15cm}\underline{= 1}$.


(2)  Correct are the proposed solutions 1 and 3:

  • The discrete-time ACF and its Fourier transform are:
$${\rm A} \{ \varphi_q ( \tau ) \} = \varphi_q ( k = 0) \cdot T \cdot \delta (\tau) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} {\rm P} \{{\it \Phi_q}( f) \} = \varphi_q ( k = 0) \cdot T = T.$$
  • It is considered that  $\varphi_q(k=0)= \sigma_q^2= 1$.  This means:   The periodic continuation of  ${\rm P} \{ {\it \Phi}_q(f) \}$  thus gives the same value for all frequencies.
  • In contrast, the continuous-time ACF can be represented as follows:  
$$ \varphi_q ( \tau ) = {\rm A} \{ \varphi_q ( \tau ) \} \star ( {\rm \delta} ( \tau) / T ).$$
  • The associated power-spectral density  (Fourier transform of the ACF)  is then the product of the Fourier transforms of the two convolution terms:  
$$ {\it \Phi_q} ( f) = {\rm P} \{ {\it \Phi_q}( f) \} \cdot {\rm sinc}^2 (f T ) = T \cdot {\rm sinc}^2 (f T ) .$$
  • Based on the chosen ACF interpolation  (with straight line intercepts)  from their samples, a  $\rm sinc^2$-shaped PSD is obtained.
  • A rectangular spectrum according to the second proposed solution would only occur with  $\rm sinc$-shaped interpolation.


(3)  The coded sequence is:   $\langle +1, \ 0, -1, +1, \ 0, -1, +1, \ 0, \ 0, \ 0 \rangle$.  Thus the 6th code symbol is  $c_6\hspace{0.15cm}\underline{= -1}$.


(4)  The occurrence probabilities of the values  $-1$,   $\ 0$   and  $+1$  are  $0.25,   0.5,   0.25$.  It follows:

$$\varphi_c ( k = 0) = 0.25 \cdot (-1)^2 + 0.5 \cdot 0^2 +0.25 \cdot (+1)^2\hspace{0.15cm}\underline{ = 0.5}. $$


(5)  For the ACF value at  $k = 1$  consider the product  $c_{\nu} \cdot c_{\nu+1}$.  The combinations shown in the table are obtained.

  • Only products  $c_{\nu} \cdot c_{\nu+1} \ne 0$  with  ${\rm Pr}\big[c_{\nu} \cdot c_{\nu+1}\big] \ne 0$:
$$\varphi_c ( k = 1) = {\rm Pr} \big [( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \big ] \cdot (+1) \cdot (-1) + {\rm Pr} \big [ ( c_{\nu} = -1) \cap ( c_{\nu + 1} = +1) \big ] \cdot (-1) \cdot (+1).$$
For ACF calculation of AMI code
  • In the table,  these terms are marked in red.  Further:
$$ {\rm Pr} \big [ ( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \big ] = $$
$$ = {\rm Pr} ( c_{\nu} = +1) \cdot {\rm Pr} \left ( c_{\nu + 1} = -1 | c_{\nu } = +1) \right ) = \frac{1}{4} \cdot \frac{1}{2}= \frac{1}{8} . $$
It is assumed that  $+1$  occurs with probability  $0.25$  and is followed by  $-1$  only in half of the cases.
  • The same result is obtained for the second contribution. Thus applies:
$$\varphi_c ( k = 1) = \frac {1}{8} \cdot (+1)\cdot (-1) + \frac {1}{8} \cdot (-1)\cdot (+1) \hspace{0.15cm}\underline{= -0.25}.$$
$$\varphi_c ( k = -1) = \varphi_c ( k = 1) \hspace{0.15cm}\underline{= -0.25}.$$
  • To calculate  $\varphi_c ( k = 2)$  it is necessary to average over  $3^3 = 27$  combinations. The result is zero.


(6)  The Fourier transform of the discrete-time ACF  ${\rm A} \{ \varphi_c(\tau) \}$  is:

$$P \{{\it \Phi_c}( f) \} = T\cdot \varphi_c ( k = 0) +2T \cdot \varphi_c ( k = 1) \cdot {\rm cos} ( 2 \pi f T ).$$
  • With the result of the last subtask,  it follows:
$$P \{{\it \Phi}_c( f) \} = \frac {T}{2} (1 - {\rm cos} ( 2 \pi f T ) )= T \cdot {\rm sin}^2 ( \pi f T ).$$
  • As shown in item  (2):  For the PSD – that is, the Fourier transform of  $\varphi_c(\tau)$:
$${\it \Phi_c}( f) = T \cdot {\rm sin}^2 ( \pi f T ) \cdot {\rm sinc}^2 ( f T ) = T \cdot \frac {{\rm sin}^4 ( \pi f T )}{( \pi f T )^2 } .$$
$$\Rightarrow \hspace{0.3cm} {\it \Phi_c}( f = 0) \hspace{0.15cm}\underline{= 0}, \hspace{0.8cm} {\it \Phi_c}( f = {\rm500 \hspace{0.1cm}kHz}) = T \cdot \frac {{\rm sin}^4 ( \pi /2 )}{( \pi /2 )^2 } = \frac {4 T}{\pi^2} \rm \hspace{0.15cm}\underline{= 0.405 \cdot 10^{-6} \ {1}/{Hz}}.$$