Difference between revisions of "Aufgaben:Exercise 4.14: ACF and CCF for Square Wave Signals"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Stochastische Signaltheorie" to "Category:Theory of Stochastic Signals: Exercises")
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Kreuzkorrelationsfunktion und Kreuzleistungsdichte
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Cross-Correlation_Function_and_Cross_Power_Density
 
}}
 
}}
  
[[File:P_ID436__Sto_A_4_14.png|right|framed|AKF und KKF bei Rechtecksignalen]]
+
[[File:P_ID436__Sto_A_4_14.png|right|framed|ACF and CCF for rectangular signals]]
Wir betrachten ein periodisches Rechtecksignal  $p(t)$  entsprechend der oberen Skizze mit den beiden möglichen Amplitudenwerten  $0 \hspace{0.05cm} \rm V$  und  $1 \hspace{0.05cm} \rm V$  und der Rechteckdauer  $T$.  Die Periodendauer beträgt somit  $T_0 = 2T$.
+
We consider a periodic square wave signal  $p(t)$  corresponding to the top sketch with the two possible amplitude values  $0 \hspace{0.05cm} \rm V$  and  $1 \hspace{0.05cm} \rm V$  and the rectangle duration  $T$.  Thus, the period duration is  $T_0 = 2T$.
  
Darunter ist das Zufallssignal  $z(t)$  gezeichnet.  
+
Below this is drawn the random signal  $z(t)$:
*Dieses ist zwischen  $(2i-1)\cdot T$  und  $2i \cdot T$  jeweils  $z(t)=0 \hspace{0.05cm} \rm V$  (im Bild rot hervorgehoben).  
+
*This is  $z(t)=0 \hspace{0.05cm} \rm V$  between  $(2i-1)\cdot T$  and  $2i \cdot T$  respectively   (highlighted in red in the figure).  
*In den blau gezeichneten Intervallen zwischen  $2i \cdot T$  und  $(2i+1) \cdot T$  ist der Signalwert zweipunktverteilt  $\pm 1 \hspace{0.05cm} \rm V$.
+
*In the intervals drawn in blue between  $2i \cdot T$  and  $(2i+1) \cdot T$  the signal value is two-point distributed  $(\pm 1 \hspace{0.05cm} \rm V)$.
  
  
Die Wahrscheinlichkeit, dass in den blau dargestellten Intervallen  $z(t)=+1 \hspace{0.05cm} \rm V$  gilt, sei allgemein gleich  $p$  und unabhängig von den vorher ausgewürfelten Werten.
+
The probability that in the intervals shown in blue  $z(t)=+1 \hspace{0.05cm} \rm V$  holds is generally equal  $p$  and independent of the previously selected values.
  
Das unterste Signal in nebenstehender Grafik kann aus den beiden ersten konstruiert werden. Es gilt:
+
The lowest signal in the adjacent graph can be constructed from the first two. It holds:
 
:$$s(t) = {1}/{2} \cdot \big[p(t) + z(t)\big].$$
 
:$$s(t) = {1}/{2} \cdot \big[p(t) + z(t)\big].$$
  
*In den rot eingezeichneten Zeitintervallen zwischen  $(2i-1) \cdot T$  und  $2i \cdot T$  $(i$  ganzzahlig$)$  gilt  $s(t)=0 \hspace{0.05cm} \rm V$, da hier sowohl  $p(t)$  als auch  $z(t)$  gleich Null sind.  
+
*In the time intervals drawn in red between  $(2i-1) \cdot T$  and  $2i \cdot T$  $(i$  integer$)$  holds  $s(t)=0 \hspace{0.05cm} \rm V$,  since here both  $p(t)$  and  $z(t)$  are equal to zero.  
*In den dazwischen liegenden Intervallen ist der Amplitudenwert zweipunktverteilt zwischen  $0 \hspace{0.05cm} \rm V$  und  $1 \hspace{0.05cm} \rm V$, wobei der Wert  $1 \hspace{0.05cm} \rm V$  wieder mit der Wahrscheinlichkeit  $p$  auftritt.  
+
*In the intervening intervals,  the amplitude value is two-point distributed between  $0 \hspace{0.05cm} \rm V$  and  $1 \hspace{0.05cm} \rm V$,  where the value  $1 \hspace{0.05cm} \rm V$  occurs again with probability  $p$.
 +
*Or in other words:   The signals  $z(t)$  and  $s(t)$  are equivalent pattern signals of the identical random process with bipolar  $(-1 \hspace{0.05cm} \rm V, \ +1 \hspace{0.05cm} \rm V)$  resp. unipolar  $(0 \hspace{0.05cm} \rm V, \ 1 \hspace{0.05cm} \rm V)$  signal representation.
  
*Oder anders ausgedrückt:   Die Signale  $z(t)$  und  $s(t)$  sind äquivalente Mustersignale des identischen Zufallsprozesses mit bipolarer  $(-1 \hspace{0.05cm} \rm V, \ +1 \hspace{0.05cm} \rm V)$  bzw. unipolarer  $(0 \hspace{0.05cm} \rm V, \ 1 \hspace{0.05cm} \rm V)$  Signaldarstellung.
 
  
  
Line 26: Line 26:
  
  
 +
Hints:
 +
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Cross-Correlation_Function_and_Cross_Power_Density|Cross-Correlation Function and Cross Power-Spectral Density]].
 +
*Refer is also made to the chapter  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
 +
*Sketch the sought correlation functions in each case in the range from  $-7T$  to  $+7T$.
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Kreuzkorrelationsfunktion_und_Kreuzleistungsdichte|Kreuzkorrelationsfunktion und Kreuzleistungsdichte]].
 
*Bezug genommen wird auch auf das Kapitel  [[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
 
 
*Skizzieren Sie die gesuchten Korrelationsfunktionen jeweils im Bereich von  $-7T$  bis  $+7T$.
 
  
  
 
+
===Questions===
 
 
===Fragebogen===
 
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die AKF&nbsp; $\varphi_z(\tau)$&nbsp; und skizzieren Sie diese f&uuml;r&nbsp; $p = 0.25$.&nbsp; Welche Werte ergeben sich f&uuml;r&nbsp; $\tau = 0$,&nbsp; $\tau = 3T$&nbsp; und&nbsp; $\tau = 6T$?
+
{Calculate the ACF&nbsp; $\varphi_z(\tau)$&nbsp; and sketch it for&nbsp; $p = 0.25$.&nbsp; What values result for&nbsp; $\tau = 0$,&nbsp; $\tau = 3T$&nbsp; and&nbsp; $\tau = 6T$?
 
|type="{}"}
 
|type="{}"}
 
$\varphi_z(\tau= 0) \ = \ $ { 0.5 3% } $\ \rm V^2$
 
$\varphi_z(\tau= 0) \ = \ $ { 0.5 3% } $\ \rm V^2$
$\varphi_z(\tau= 3T) \ = \ $ { 0. } $\ \rm V^2$
+
$\varphi_z(\tau= 3T) \ = \ $ { 0. } $\ \rm V^2$
$\varphi_z(\tau= 6T) \ = \ $ { 0.125 3% } $\ \rm V^2$
+
$\varphi_z(\tau= 6T) \ = \ $ { 0.125 3% } $\ \rm V^2$
  
  
{Berechnen Sie nun unter Zuhilfenahme des Ergebnisses aus&nbsp; '''(1)'''&nbsp; die AKF&nbsp; $\varphi_p(\tau)$.&nbsp; Welche Werte ergeben sich f&uuml;r&nbsp; $\tau = 0$,&nbsp; $\tau = 3T$&nbsp; und&nbsp; $\tau = 6T$?
+
{Now,&nbsp; using the result from&nbsp; '''(1)'''&nbsp; calculate the ACF&nbsp; $\varphi_p(\tau)$.&nbsp; What values result for&nbsp; $\tau = 0$,&nbsp; $\tau = 3T$&nbsp; and&nbsp; $\tau = 6T$?
 
|type="{}"}
 
|type="{}"}
$\varphi_p(\tau= 0) \ = \ $ { 0.5 3% } $\ \rm V^2$
+
$\varphi_p(\tau= 0) \ = \ $ { 0.5 3% } $\ \rm V^2$
$\varphi_p(\tau= 3T) \ = \ $ { 0. } $\ \rm V^2$
+
$\varphi_p(\tau= 3T) \ = \ $ { 0. } $\ \rm V^2$
$\varphi_p(\tau= 6T) \ = \ $ { 0.5 3% } $\ \rm V^2$
+
$\varphi_p(\tau= 6T) \ = \ $ { 0.5 3% } $\ \rm V^2$
  
  
{Es gelte  wieder&nbsp; $p = 0.25$.&nbsp; Berechnen Sie die Kreuzkorrelationsfunktion&nbsp; $\varphi_{pz}(\tau)$ f&uuml;r&nbsp; $\tau = 0$,&nbsp; $\tau = 3T$&nbsp; und&nbsp; $\tau = 6T$&nbsp;?
+
{It holds again&nbsp; $p = 0.25$.&nbsp; Calculate the cross-correlation function&nbsp; $\varphi_{pz}(\tau)$ for&nbsp; $\tau = 0$,&nbsp; $\tau = 3T$&nbsp; and&nbsp; $\tau = 6T$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$\varphi_{pz}(\tau= 0) \ = \ $ { -0.26--0.24 } $\ \rm V^2$
+
$\varphi_{pz}(\tau= 0) \ = \ $ { -0.26--0.24 } $\ \rm V^2$
$\varphi_{pz}(\tau= 3T) \ = \ $ { 0. } $\ \rm V^2$
+
$\varphi_{pz}(\tau= 3T) \ = \ $ { 0. } $\ \rm V^2$
$\varphi_{pz}(\tau= 6T) \ = \ $ { -0.26--0.24 } $\ \rm V^2$
+
$\varphi_{pz}(\tau= 6T) \ = \ $ { -0.26--0.24 } $\ \rm V^2$
  
  
{Welche AKF $\varphi_c(\tau)$ ergibt sich allgemein f&uuml;r die Summe&nbsp; $c(t) = a(t) + b(t)$&nbsp;?
+
{What ACF&nbsp; $\varphi_c(\tau)$&nbsp; results in general for the sum&nbsp; $c(t) = a(t) + b(t)$&nbsp;?
 
|type="()"}
 
|type="()"}
 
- $\varphi_c(\tau) = \varphi_a(\tau) + \varphi_b(\tau)$.
 
- $\varphi_c(\tau) = \varphi_a(\tau) + \varphi_b(\tau)$.
+ $\varphi_c(\tau) = \varphi_a(\tau) + \varphi_{ab}(\tau) + \varphi_{ba}(\tau) + \varphi_b(\tau)$.
+
+ $\varphi_c(\tau) = \varphi_a(\tau) + \varphi_{ab}(\tau) + \varphi_{ba}(\tau) + \varphi_b(\tau)$.
 
- $\varphi_c(\tau) = \varphi_a(\tau) \star \varphi_b(\tau)$.
 
- $\varphi_c(\tau) = \varphi_a(\tau) \star \varphi_b(\tau)$.
  
  
{Berechnen Sie unter Ber&uuml;cksichtigung des Ergebnisses von&nbsp; '''(4)'''&nbsp; die AKF&nbsp; $\varphi_s(\tau)$.&nbsp; Welche Werte ergeben sich mit&nbsp; $p = 0.25$&nbsp; f&uuml;r&nbsp; $\tau = 0$,&nbsp; $\tau = 3T$&nbsp; und&nbsp; $\tau = 6T$&nbsp;?
+
{Calculate  the ACF&nbsp; $\varphi_s(\tau)$,&nbsp; taking into account the result of&nbsp; '''(4)'''. &nbsp; What values result with&nbsp; $p = 0.25$&nbsp; for&nbsp; $\tau = 0$,&nbsp; $\tau = 3T$&nbsp; and&nbsp; $\tau = 6T$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$\varphi_s(\tau= 0) \ = \ $ { 0.125 3% } $\ \rm V^2$
+
$\varphi_s(\tau= 0) \ = \ $ { 0.125 3% } $\ \rm V^2$
$\varphi_s(\tau= 3T) \ = \ $ { 0. } $\ \rm V^2$
+
$\varphi_s(\tau= 3T) \ = \ $ { 0. } $\ \rm V^2$
$\varphi_s(\tau= 6T) \ = \ $ { -0.03175--0.03075 } $\ \rm V^2$
+
$\varphi_s(\tau= 6T) \ = \ $ { -0.03175--0.03075 } $\ \rm V^2$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der AKF-Wert bei&nbsp; $\tau = 0$&nbsp; gibt die mittlere Leistung an:
+
'''(1)'''&nbsp; The ACF value at&nbsp; $\tau = 0$&nbsp; gives the average power:
 
:$$\varphi_z ( \tau = 0) = {1}/{2} \cdot (1 {\rm V})^2 \hspace{0.15cm}\underline{= 0.5 {\rm V}^2}.$$
 
:$$\varphi_z ( \tau = 0) = {1}/{2} \cdot (1 {\rm V})^2 \hspace{0.15cm}\underline{= 0.5 {\rm V}^2}.$$
  
*F&uuml;r&nbsp; $\tau = \pm T$, $\underline{\tau = \pm 3T}$, ... &nbsp; ergibt sich&nbsp; $\varphi_z ( \tau)\hspace{0.15cm}\underline{ = 0}$.  
+
*For&nbsp; $\tau = \pm T$,&nbsp; $\underline{\tau = \pm 3T}$, ... &nbsp; results&nbsp; $\varphi_z ( \tau)\hspace{0.15cm}\underline{ = 0}$.  
 +
*For intermediate values&nbsp; $\tau = \pm 2T$,&nbsp; $\tau = \pm 4T$,&nbsp; $\underline{\tau = \pm 6T}$, ... &nbsp; applies:
 +
:$$\varphi_z ( \tau) = \frac {1 {\rm V}^2}{2}  \left(p \hspace{0.02cm} \cdot \hspace{0.02cm}p \hspace{0.2cm} + \hspace{0.2cm}p \hspace{0.02cm}\cdot \hspace{0.02cm}(p-1) \hspace{0.2cm}+\hspace{0.2cm} (p-1)\hspace{0.02cm} \cdot \hspace{0.02cm}p \hspace{0.2cm}+\hspace{0.2cm} (p-1)\hspace{0.02cm} \cdot \hspace{0.02cm}(p-1)\right) = \hspace{0.1cm}\text{...} \hspace{0.1cm}= 0.5\, {\rm V}^2 \cdot (1-2p)^2 .$$
  
*F&uuml;r die Zwischenwerte&nbsp; $\tau = \pm 2T$,&nbsp; $\tau = \pm 4T$,&nbsp; $\underline{\tau = \pm 6T}$, ... &nbsp; gilt:
+
*Here&nbsp; $p$&nbsp; stands for&nbsp; $p \cdot (+1)$&nbsp; and&nbsp; $(p-1)$&nbsp; for $(1-p) \cdot (-1)$, i.e. probability times normalized amplitude value,&nbsp; respectively.
:$$\varphi_z ( \tau) =  \frac {1 {\rm V}^2}{2}  \left(p \hspace{0.02cm} \cdot \hspace{0.02cm}p \hspace{0.2cm} + \hspace{0.2cm}p \hspace{0.02cm}\cdot \hspace{0.02cm}(p-1) \hspace{0.2cm}+\hspace{0.2cm} (p-1)\hspace{0.02cm} \cdot \hspace{0.02cm}p \hspace{0.2cm}+\hspace{0.2cm} (p-1)\hspace{0.02cm} \cdot \hspace{0.02cm}(p-1)\right)  = \hspace{0.1cm}\text{...} \hspace{0.1cm}= 0.5\, {\rm V}^2 \cdot (1-2p)^2 .$$
+
[[File:P_ID437__Sto_A_4_14_a.png|frame|right|Auto-correlation functions and cross-correlation function]]
 +
*With&nbsp; $p = 0.25$&nbsp; one gets&nbsp; $\varphi_z ( \tau = \pm 6 T) \hspace{0.15cm}\underline{=0.125 \rm V^2}$.
  
[[File:P_ID437__Sto_A_4_14_a.png|frame|right|Autokorrelationsfunktionen und Kreuzkorrelationsfunktion]]
 
*Hierbei steht&nbsp; $p$ f&uuml;r&nbsp; $p \cdot (+1)$&nbsp; und&nbsp; $(p-1)$&nbsp; f&uuml;r $(1-p) \cdot (-1)$, also jeweils Wahrscheinlichkeit mal normierter Amplitudenwert.
 
*Mit&nbsp; $p = 0.25$&nbsp; erhält man&nbsp; $\varphi_z ( \tau = \pm 6 T) \hspace{0.15cm}\underline{=0.125 \rm V^2}$.
 
  
  
Die blaue Kurve zeigt&nbsp; $\varphi_z(\tau)$&nbsp; f&uuml;r&nbsp; $p = 0.25$&nbsp; im Bereich von&nbsp; $-7T \le \tau \le +7T$:  
+
The blue curve shows&nbsp; $\varphi_z(\tau)$&nbsp; for&nbsp; $p = 0.25$&nbsp; in the range of&nbsp; $-7T \le \tau \le +7T$:  
*Aufgrund des rechteckf&ouml;rmigen Signalverlaufs ergibt sich eine Summe von Dreieckfunktionen.  
+
*Because of the rectangular signal waveform,&nbsp; a sum of triangular functions is obtained.  
*F&uuml;r&nbsp; $p = 0.5$&nbsp; w&uuml;rden die &auml;u&szlig;eren (kleineren) Dreiecke verschwinden.
+
*For&nbsp; $p = 0.5$&nbsp; the outer&nbsp; (smaller)&nbsp; triangles would disappear.
 
<br clear=all>
 
<br clear=all>
'''(2)'''&nbsp; Die AKF&nbsp; $\varphi_p(\tau)$&nbsp; des unipolaren periodischen Signals&nbsp; $p(t)$&nbsp; ist in der allgemeing&uuml;ltigen Darstellung von&nbsp; '''(1)''' &nbsp; &rArr; &nbsp; AKF&nbsp; $\varphi_z(\tau)$ als Sonderfall f&uuml;r&nbsp; $p = 1$&nbsp; enthalten.  
+
'''(2)'''&nbsp; The ACF&nbsp; $\varphi_p(\tau)$&nbsp; of the unipolar periodic signal&nbsp; $p(t)$&nbsp; is in the generalized representation of&nbsp; '''(1)''' &nbsp; &rArr; &nbsp; ACF&nbsp; $\varphi_z(\tau)$ as a special case for&nbsp; $p = 1$&nbsp; .  
*Man erh&auml;lt nun eine periodische AKF (siehe roter Kurvenverlauf in obiger Skizze) mit
+
*Now one obtains a periodic ACF&nbsp; (see red curve in the above sketch)&nbsp; with
 
:$$\varphi_p ( \tau = 0) = \varphi_p ( \tau = \pm 2 T) = \varphi_p ( \tau = \pm 4 T) = \hspace{0.1cm} \text{...} \hspace{0.1cm}\hspace{0.15cm}\underline{= 0.5 {\rm V}^2},$$
 
:$$\varphi_p ( \tau = 0) = \varphi_p ( \tau = \pm 2 T) = \varphi_p ( \tau = \pm 4 T) = \hspace{0.1cm} \text{...} \hspace{0.1cm}\hspace{0.15cm}\underline{= 0.5 {\rm V}^2},$$
 
:$$\varphi_p ( \tau = \pm T) = \varphi_p ( \tau = \pm 3T) = \hspace{0.1cm} ... \hspace{0.1cm}\hspace{0.15cm}\underline{= 0}.$$
 
:$$\varphi_p ( \tau = \pm T) = \varphi_p ( \tau = \pm 3T) = \hspace{0.1cm} ... \hspace{0.1cm}\hspace{0.15cm}\underline{= 0}.$$
Line 103: Line 100:
  
  
'''(3)'''&nbsp; Auch f&uuml;r die Kreuzkorrelationsfunktion ergibt sich f&uuml;r&nbsp; $\tau = \pm T$,&nbsp; $\underline{\tau = \pm 3T}$, ... &nbsp; stets der Wert Null.  
+
'''(3)'''&nbsp; For the cross-correlation function results for&nbsp; $\tau = \pm T$,&nbsp; $\underline{\tau = \pm 3T}$, ... &nbsp; always the value zero.  
*Dagegen sind die KKF-Werte f&uuml;r&nbsp; $\tau = \pm 2T$,&nbsp; $\tau = \pm 2T$, ... &nbsp; identisch mit denen bei&nbsp; $\tau = 0$:
+
*In contrast,&nbsp; the CCF values for&nbsp; $\tau = \pm 2T$,&nbsp; $\tau = \pm 2T$, ... &nbsp; identical to those for&nbsp; $\tau = 0$:
:$$\varphi_{pz} ( \tau = 0) = \varphi_{pz} ( \tau = \pm 2 T) = \varphi_{pz} ( \tau = \pm 4 T) = \hspace{0.1cm} \text{...}  \hspace{0.1cm}= \frac {1 {\rm V}^2}{2}  \left( p - (1-p)\right) = \frac {2p -1}{2}\, {\rm V}^2 .$$
+
:$$\varphi_{pz} ( \tau = 0) = \varphi_{pz} ( \tau = \pm 2 T) = \varphi_{pz} ( \tau = \pm 4 T) = \hspace{0.1cm} \text{...}  \hspace{0.1cm}= \frac {1 {\rm V}^2}{2}  \left( p - (1-p)\right) = \frac {2p -1}{2}\, {\rm V}^2 .$$
  
*Man erhält mit&nbsp; $p = 0.25$&nbsp; folgende Ergebnisse (siehe grüne Kurve in obiger Skizze):
+
*You get the following results with&nbsp; $p = 0.25$&nbsp; (see green curve in above sketch):
 
:$$\varphi_{pz} ( \tau = 0)\hspace{0.15cm}\underline{= -0.25 {\rm V}^2},\hspace{0.5cm}
 
:$$\varphi_{pz} ( \tau = 0)\hspace{0.15cm}\underline{= -0.25 {\rm V}^2},\hspace{0.5cm}
 
\varphi_{pz} ( \tau = 3T)\hspace{0.15cm}\underline{= 0},\hspace{0.5cm}
 
\varphi_{pz} ( \tau = 3T)\hspace{0.15cm}\underline{= 0},\hspace{0.5cm}
 
\varphi_{pz} ( \tau = 6T)\hspace{0.15cm}\underline{= -0.25 {\rm V}^2}.$$
 
\varphi_{pz} ( \tau = 6T)\hspace{0.15cm}\underline{= -0.25 {\rm V}^2}.$$
  
*Mit&nbsp; $p = 1$&nbsp; würde dagegen&nbsp; $z(t) \equiv p(t)$&nbsp; gelten und damit nat&uuml;rlich auch&nbsp; $\varphi_{pz}(\tau) \equiv \varphi_{p}(\tau) \equiv \varphi_{z}(\tau)$.  
+
*With&nbsp; $p = 1$&nbsp; on the other hand&nbsp; $z(t) \equiv p(t)$&nbsp; would hold and so of course&nbsp; $\varphi_{pz}(\tau) \equiv \varphi_{p}(\tau) \equiv \varphi_{z}(\tau)$.  
*Für den Sonderfall&nbsp; $p = 0.5$&nbsp; erg&auml;be sich keine Korrelation zwischen&nbsp; $p(t)$&nbsp; und&nbsp; $z(t)$&nbsp; und damit&nbsp; $\varphi_{pz}(\tau) \equiv 0$.
+
*For the special case&nbsp; $p = 0.5$&nbsp; there would be no correlation between&nbsp; $p(t)$&nbsp; and&nbsp; $z(t)$&nbsp; and thus&nbsp; $\varphi_{pz}(\tau) \equiv 0$.
  
  
  
  
'''(4)'''&nbsp; Durch Einsetzen von &nbsp;$c(t) = a(t) + b(t)$&nbsp; in die allgemeine AKF-Definition erh&auml;lt man:
+
'''(4)'''&nbsp; Substituting &nbsp;$c(t) = a(t) + b(t)$&nbsp; into the general ACF definition yields:
 
:$$\varphi_c ( \tau ) = \overline{c(t)\hspace{0.02cm} \cdot \hspace{0.02cm} c(t + \tau)} = \overline{a(t)\hspace{0.02cm} \cdot \hspace{0.02cm} a(t + \tau)} \hspace{0.1cm}+\hspace{0.1cm}\overline{a(t)\hspace{0.02cm} \cdot \hspace{0.02cm} b(t + \tau)} +\overline{b(t)\hspace{0.02cm} \cdot \hspace{0.02cm} a(t + \tau)} \hspace{0.1cm}+\hspace{0.1cm}\overline{b(t)\hspace{0.02cm} \cdot \hspace{0.02cm} b(t + \tau)}. $$
 
:$$\varphi_c ( \tau ) = \overline{c(t)\hspace{0.02cm} \cdot \hspace{0.02cm} c(t + \tau)} = \overline{a(t)\hspace{0.02cm} \cdot \hspace{0.02cm} a(t + \tau)} \hspace{0.1cm}+\hspace{0.1cm}\overline{a(t)\hspace{0.02cm} \cdot \hspace{0.02cm} b(t + \tau)} +\overline{b(t)\hspace{0.02cm} \cdot \hspace{0.02cm} a(t + \tau)} \hspace{0.1cm}+\hspace{0.1cm}\overline{b(t)\hspace{0.02cm} \cdot \hspace{0.02cm} b(t + \tau)}. $$
:$$\Rightarrow \hspace{0.5cm} \varphi_c ( \tau ) = \varphi_{a} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{ab} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{ba} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm}\varphi_{a} ( \tau ). $$
+
:$$\Rightarrow \hspace{0.5cm} \varphi_c ( \tau ) = \varphi_{a} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{ab} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{ba} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm}\varphi_{a} ( \tau ). $$
  
*Richtig ist somit  der <u>L&ouml;sungsvorschlag 2</u>.  
+
*The correct solution is thus the&nbsp; <u>proposed solution 2</u>.  
*Der L&ouml;sungsvorschlag 1 trifft nur zu, wenn&nbsp; $a(t)$&nbsp; und&nbsp; $b(t)$&nbsp; unkorreliert sind.  
+
*The proposed solution 1 is true only if&nbsp; $a(t)$&nbsp; and&nbsp; $b(t)$&nbsp; are uncorrelated.  
*Der letzte Vorschlag, die Faltungsoperation, ist immer falsch.  
+
*The last proposition:&nbsp; The convolution operation is always false.  
*Eine ähnliche Gleichung w&uuml;rde sich nur dann ergeben, wenn wir die WDF&nbsp; $f_c(c)$&nbsp; der Summe &nbsp;$c(t) = a(t) + b(t)$&nbsp; betrachten und&nbsp; $a(t)$&nbsp; und&nbsp; $b(t)$&nbsp; statistisch unabh&auml;ngig sind: &nbsp; $f_c (c) = f_a (a) \star f_b (b) .$
+
*A similar equation would result only if we consider the PDF&nbsp; $f_c(c)$&nbsp; of the sum &nbsp;$c(t) = a(t) + b(t)$&nbsp; and&nbsp; $a(t)$&nbsp; and&nbsp; $b(t)$&nbsp; are statistically independent: &nbsp;  
 +
:$$f_c (c) = f_a (a) \star f_b (b) .$$
  
  
  
'''(5)'''&nbsp; Mit dem Ergebnis aus&nbsp; '''(4)'''&nbsp; und unter Ber&uuml;cksichtigung des Faktors&nbsp; $1/2$&nbsp; erh&auml;lt man:
+
'''(5)'''&nbsp; Using the result from&nbsp; '''(4)'''&nbsp; and taking into account the factor&nbsp; $1/2$&nbsp; we get:
:$$\varphi_s ( \tau ) = {1}/{4} \cdot \big[ \varphi_{p} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{z} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} 2 \cdot \varphi_{pz} ( \tau ) \big] . $$
+
:$$\varphi_s ( \tau ) = {1}/{4} \cdot \big[ \varphi_{p} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{z} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} 2 \cdot \varphi_{pz} ( \tau ) \big] . $$
  
*Hierbei ist bereits ber&uuml;cksichtigt, dass die KKF zwischen&nbsp; $p(t)$&nbsp; und&nbsp; $z(t)$&nbsp; eine gerade Funktion ist, so dass auch&nbsp; $\varphi_{pz}(\tau) = \varphi_{zp}(\tau)$&nbsp; gilt.  
+
*This already takes into account that the CCF between&nbsp; $p(t)$&nbsp; and&nbsp; $z(t)$&nbsp; is an even function,&nbsp; so that&nbsp; $\varphi_{pz}(\tau) = \varphi_{zp}(\tau)$&nbsp; holds.  
*F&uuml;r&nbsp; $\tau = 0$&nbsp; erh&auml;lt man deshalb mit den obigen Ergebnissen allgemein:
+
*For&nbsp; $\tau = 0$&nbsp; one therefore obtains in general with the above results:
:$$\varphi_s( \tau = 0) = {1}/{4} \cdot \left( 0.5 {\rm V}^2 +0.5 {\rm V}^2 + 2 \cdot \frac{2p-1}{2} {\rm V}^2\right) .$$
+
:$$\varphi_s( \tau = 0) = {1}/{4} \cdot \left( 0.5 {\rm V}^2 +0.5 {\rm V}^2 + 2 \cdot \frac{2p-1}{2} {\rm V}^2\right) .$$
*Mit&nbsp; $p = 0.25$&nbsp; ergibt sich&nbsp; $\varphi_{pz} ( \tau = 0 ) = 0.125\rm V^2$.&nbsp; Dieses Ergebnis ist plausibel.&nbsp; Im Mittel ist nur in jedem achten Intervall&nbsp; $s(t)=1 \hspace{0.05cm} \rm V$;&nbsp; ansonsten ist&nbsp; $s(t)=0 \hspace{0.05cm} \rm V$.
+
*With&nbsp; $p = 0.25$&nbsp; we get&nbsp; $\varphi_{pz} ( \tau = 0 ) = 0.125\rm V^2$.&nbsp; This result is plausible.&nbsp; On average,&nbsp; only in every eighth interval&nbsp; $s(t)=1 \hspace{0.05cm} \rm V$;&nbsp; otherwise&nbsp; $s(t)=0 \hspace{0.05cm} \rm V$.
  
*F&uuml;r geradzahlige Vielfache von&nbsp; $T$&nbsp; gilt:
+
*For even multiples of&nbsp; $T$&nbsp; holds:
:$$ \varphi_s ( \tau = \pm 2 T) = \varphi_s ( \tau = \pm 4 T) = \hspace{0.1cm} \text{ ...} \hspace{0.1cm} = \frac {0.5 {\rm V}^2}{4}  \left( (1-2p)^2 +1 + 2 \cdot (2p -1)\right) = 0.5 \, {\rm V}^2 \hspace{0.02cm} \cdot \hspace{0.02cm} p^2.$$
+
:$$ \varphi_s ( \tau = \pm 2 T) = \varphi_s ( \tau = \pm 4 T) = \hspace{0.1cm} \text{ ...} \hspace{0.1cm} = \frac {0.5 {\rm V}^2}{4}  \left( (1-2p)^2 +1 + 2 \cdot (2p -1)\right) = 0.5 \, {\rm V}^2 \hspace{0.02cm} \cdot \hspace{0.02cm} p^2.$$
  
*Mit&nbsp; $p = 0.5$&nbsp; erh&auml;lt man hierf&uuml;r den Wert&nbsp; $0.03125 \hspace{0.1cm}{\rm V}^2$.&nbsp; Alle AKF-Werte bei ungeradzahligen Vielfachen von&nbsp; $T$&nbsp; sind wieder Null.  
+
*With&nbsp; $p = 0.5$&nbsp; we obtain for this the value&nbsp; $0.03125 \hspace{0.1cm}{\rm V}^2$.&nbsp; All ACF values at odd multiples of&nbsp; $T$&nbsp; are zero again.  
*Damit ergibt sich der skizzierte AKF&ndash;Verlauf.  
+
*This gives the outlined ACF&ndash;curve.  
  
  
[[File:P_ID441__Sto_A_4_14_e.png|framed|right|AKF eines unipolaren Rechtecksignals]]
+
[[File:P_ID441__Sto_A_4_14_e.png|framed|right|ACF of a unipolar rectangular signal]]
Die gesuchten Zahlenwerte sind somit:
+
Thus, the numerical values we are looking for are:
 
:$$\varphi_{s} ( \tau = 0)\hspace{0.15cm}\underline{= 0.125 {\rm V}^2},$$
 
:$$\varphi_{s} ( \tau = 0)\hspace{0.15cm}\underline{= 0.125 {\rm V}^2},$$
 
:$$\varphi_{s} ( \tau = 3T)\hspace{0.15cm}\underline{= 0},$$
 
:$$\varphi_{s} ( \tau = 3T)\hspace{0.15cm}\underline{= 0},$$
 
:$$\varphi_{s} ( \tau = 6T)\hspace{0.15cm}\underline{= -0.03125 {\rm V}^2}.$$
 
:$$\varphi_{s} ( \tau = 6T)\hspace{0.15cm}\underline{= -0.03125 {\rm V}^2}.$$
  
Ein Vergleich mit der Skizze zur Teilaufgabe&nbsp; '''(1)'''&nbsp; zeigt, dass das bin&auml;re Signal&nbsp; $s(t)$&nbsp; bis auf den Faktor&nbsp; $1/4$&nbsp; die gleiche AKF aufweist wie das Tern&auml;rsignal&nbsp; $z(t)$.
+
A comparison with the sketch for subtask&nbsp; '''(1)'''&nbsp; shows that the binary signal&nbsp; $s(t)$&nbsp; has the same ACF as the ternary signal&nbsp; $z(t)$ except for the factor&nbsp; $1/4$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Theory of Stochastic Signals: Exercises|^4.6 KKF und Kreuzleistungsdichte^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.6 CCF and Cross Power-Spectral Density^]]

Latest revision as of 18:57, 26 March 2022

ACF and CCF for rectangular signals

We consider a periodic square wave signal  $p(t)$  corresponding to the top sketch with the two possible amplitude values  $0 \hspace{0.05cm} \rm V$  and  $1 \hspace{0.05cm} \rm V$  and the rectangle duration  $T$.  Thus, the period duration is  $T_0 = 2T$.

Below this is drawn the random signal  $z(t)$:

  • This is  $z(t)=0 \hspace{0.05cm} \rm V$  between  $(2i-1)\cdot T$  and  $2i \cdot T$  respectively   (highlighted in red in the figure).
  • In the intervals drawn in blue between  $2i \cdot T$  and  $(2i+1) \cdot T$  the signal value is two-point distributed  $(\pm 1 \hspace{0.05cm} \rm V)$.


The probability that in the intervals shown in blue  $z(t)=+1 \hspace{0.05cm} \rm V$  holds is generally equal  $p$  and independent of the previously selected values.

The lowest signal in the adjacent graph can be constructed from the first two. It holds:

$$s(t) = {1}/{2} \cdot \big[p(t) + z(t)\big].$$
  • In the time intervals drawn in red between  $(2i-1) \cdot T$  and  $2i \cdot T$  $(i$  integer$)$  holds  $s(t)=0 \hspace{0.05cm} \rm V$,  since here both  $p(t)$  and  $z(t)$  are equal to zero.
  • In the intervening intervals,  the amplitude value is two-point distributed between  $0 \hspace{0.05cm} \rm V$  and  $1 \hspace{0.05cm} \rm V$,  where the value  $1 \hspace{0.05cm} \rm V$  occurs again with probability  $p$.
  • Or in other words:   The signals  $z(t)$  and  $s(t)$  are equivalent pattern signals of the identical random process with bipolar  $(-1 \hspace{0.05cm} \rm V, \ +1 \hspace{0.05cm} \rm V)$  resp. unipolar  $(0 \hspace{0.05cm} \rm V, \ 1 \hspace{0.05cm} \rm V)$  signal representation.




Hints:



Questions

1

Calculate the ACF  $\varphi_z(\tau)$  and sketch it for  $p = 0.25$.  What values result for  $\tau = 0$,  $\tau = 3T$  and  $\tau = 6T$?

$\varphi_z(\tau= 0) \ = \ $

$\ \rm V^2$
$\varphi_z(\tau= 3T) \ = \ $

$\ \rm V^2$
$\varphi_z(\tau= 6T) \ = \ $

$\ \rm V^2$

2

Now,  using the result from  (1)  calculate the ACF  $\varphi_p(\tau)$.  What values result for  $\tau = 0$,  $\tau = 3T$  and  $\tau = 6T$?

$\varphi_p(\tau= 0) \ = \ $

$\ \rm V^2$
$\varphi_p(\tau= 3T) \ = \ $

$\ \rm V^2$
$\varphi_p(\tau= 6T) \ = \ $

$\ \rm V^2$

3

It holds again  $p = 0.25$.  Calculate the cross-correlation function  $\varphi_{pz}(\tau)$ for  $\tau = 0$,  $\tau = 3T$  and  $\tau = 6T$ ?

$\varphi_{pz}(\tau= 0) \ = \ $

$\ \rm V^2$
$\varphi_{pz}(\tau= 3T) \ = \ $

$\ \rm V^2$
$\varphi_{pz}(\tau= 6T) \ = \ $

$\ \rm V^2$

4

What ACF  $\varphi_c(\tau)$  results in general for the sum  $c(t) = a(t) + b(t)$ ?

$\varphi_c(\tau) = \varphi_a(\tau) + \varphi_b(\tau)$.
$\varphi_c(\tau) = \varphi_a(\tau) + \varphi_{ab}(\tau) + \varphi_{ba}(\tau) + \varphi_b(\tau)$.
$\varphi_c(\tau) = \varphi_a(\tau) \star \varphi_b(\tau)$.

5

Calculate the ACF  $\varphi_s(\tau)$,  taking into account the result of  (4).   What values result with  $p = 0.25$  for  $\tau = 0$,  $\tau = 3T$  and  $\tau = 6T$ ?

$\varphi_s(\tau= 0) \ = \ $

$\ \rm V^2$
$\varphi_s(\tau= 3T) \ = \ $

$\ \rm V^2$
$\varphi_s(\tau= 6T) \ = \ $

$\ \rm V^2$


Solution

(1)  The ACF value at  $\tau = 0$  gives the average power:

$$\varphi_z ( \tau = 0) = {1}/{2} \cdot (1 {\rm V})^2 \hspace{0.15cm}\underline{= 0.5 {\rm V}^2}.$$
  • For  $\tau = \pm T$,  $\underline{\tau = \pm 3T}$, ...   results  $\varphi_z ( \tau)\hspace{0.15cm}\underline{ = 0}$.
  • For intermediate values  $\tau = \pm 2T$,  $\tau = \pm 4T$,  $\underline{\tau = \pm 6T}$, ...   applies:
$$\varphi_z ( \tau) = \frac {1 {\rm V}^2}{2} \left(p \hspace{0.02cm} \cdot \hspace{0.02cm}p \hspace{0.2cm} + \hspace{0.2cm}p \hspace{0.02cm}\cdot \hspace{0.02cm}(p-1) \hspace{0.2cm}+\hspace{0.2cm} (p-1)\hspace{0.02cm} \cdot \hspace{0.02cm}p \hspace{0.2cm}+\hspace{0.2cm} (p-1)\hspace{0.02cm} \cdot \hspace{0.02cm}(p-1)\right) = \hspace{0.1cm}\text{...} \hspace{0.1cm}= 0.5\, {\rm V}^2 \cdot (1-2p)^2 .$$
  • Here  $p$  stands for  $p \cdot (+1)$  and  $(p-1)$  for $(1-p) \cdot (-1)$, i.e. probability times normalized amplitude value,  respectively.
Auto-correlation functions and cross-correlation function
  • With  $p = 0.25$  one gets  $\varphi_z ( \tau = \pm 6 T) \hspace{0.15cm}\underline{=0.125 \rm V^2}$.


The blue curve shows  $\varphi_z(\tau)$  for  $p = 0.25$  in the range of  $-7T \le \tau \le +7T$:

  • Because of the rectangular signal waveform,  a sum of triangular functions is obtained.
  • For  $p = 0.5$  the outer  (smaller)  triangles would disappear.


(2)  The ACF  $\varphi_p(\tau)$  of the unipolar periodic signal  $p(t)$  is in the generalized representation of  (1)   ⇒   ACF  $\varphi_z(\tau)$ as a special case for  $p = 1$  .

  • Now one obtains a periodic ACF  (see red curve in the above sketch)  with
$$\varphi_p ( \tau = 0) = \varphi_p ( \tau = \pm 2 T) = \varphi_p ( \tau = \pm 4 T) = \hspace{0.1cm} \text{...} \hspace{0.1cm}\hspace{0.15cm}\underline{= 0.5 {\rm V}^2},$$
$$\varphi_p ( \tau = \pm T) = \varphi_p ( \tau = \pm 3T) = \hspace{0.1cm} ... \hspace{0.1cm}\hspace{0.15cm}\underline{= 0}.$$


(3)  For the cross-correlation function results for  $\tau = \pm T$,  $\underline{\tau = \pm 3T}$, ...   always the value zero.

  • In contrast,  the CCF values for  $\tau = \pm 2T$,  $\tau = \pm 2T$, ...   identical to those for  $\tau = 0$:
$$\varphi_{pz} ( \tau = 0) = \varphi_{pz} ( \tau = \pm 2 T) = \varphi_{pz} ( \tau = \pm 4 T) = \hspace{0.1cm} \text{...} \hspace{0.1cm}= \frac {1 {\rm V}^2}{2} \left( p - (1-p)\right) = \frac {2p -1}{2}\, {\rm V}^2 .$$
  • You get the following results with  $p = 0.25$  (see green curve in above sketch):
$$\varphi_{pz} ( \tau = 0)\hspace{0.15cm}\underline{= -0.25 {\rm V}^2},\hspace{0.5cm} \varphi_{pz} ( \tau = 3T)\hspace{0.15cm}\underline{= 0},\hspace{0.5cm} \varphi_{pz} ( \tau = 6T)\hspace{0.15cm}\underline{= -0.25 {\rm V}^2}.$$
  • With  $p = 1$  on the other hand  $z(t) \equiv p(t)$  would hold and so of course  $\varphi_{pz}(\tau) \equiv \varphi_{p}(\tau) \equiv \varphi_{z}(\tau)$.
  • For the special case  $p = 0.5$  there would be no correlation between  $p(t)$  and  $z(t)$  and thus  $\varphi_{pz}(\tau) \equiv 0$.



(4)  Substituting  $c(t) = a(t) + b(t)$  into the general ACF definition yields:

$$\varphi_c ( \tau ) = \overline{c(t)\hspace{0.02cm} \cdot \hspace{0.02cm} c(t + \tau)} = \overline{a(t)\hspace{0.02cm} \cdot \hspace{0.02cm} a(t + \tau)} \hspace{0.1cm}+\hspace{0.1cm}\overline{a(t)\hspace{0.02cm} \cdot \hspace{0.02cm} b(t + \tau)} +\overline{b(t)\hspace{0.02cm} \cdot \hspace{0.02cm} a(t + \tau)} \hspace{0.1cm}+\hspace{0.1cm}\overline{b(t)\hspace{0.02cm} \cdot \hspace{0.02cm} b(t + \tau)}. $$
$$\Rightarrow \hspace{0.5cm} \varphi_c ( \tau ) = \varphi_{a} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{ab} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{ba} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm}\varphi_{a} ( \tau ). $$
  • The correct solution is thus the  proposed solution 2.
  • The proposed solution 1 is true only if  $a(t)$  and  $b(t)$  are uncorrelated.
  • The last proposition:  The convolution operation is always false.
  • A similar equation would result only if we consider the PDF  $f_c(c)$  of the sum  $c(t) = a(t) + b(t)$  and  $a(t)$  and  $b(t)$  are statistically independent:  
$$f_c (c) = f_a (a) \star f_b (b) .$$


(5)  Using the result from  (4)  and taking into account the factor  $1/2$  we get:

$$\varphi_s ( \tau ) = {1}/{4} \cdot \big[ \varphi_{p} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{z} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} 2 \cdot \varphi_{pz} ( \tau ) \big] . $$
  • This already takes into account that the CCF between  $p(t)$  and  $z(t)$  is an even function,  so that  $\varphi_{pz}(\tau) = \varphi_{zp}(\tau)$  holds.
  • For  $\tau = 0$  one therefore obtains in general with the above results:
$$\varphi_s( \tau = 0) = {1}/{4} \cdot \left( 0.5 {\rm V}^2 +0.5 {\rm V}^2 + 2 \cdot \frac{2p-1}{2} {\rm V}^2\right) .$$
  • With  $p = 0.25$  we get  $\varphi_{pz} ( \tau = 0 ) = 0.125\rm V^2$.  This result is plausible.  On average,  only in every eighth interval  $s(t)=1 \hspace{0.05cm} \rm V$;  otherwise  $s(t)=0 \hspace{0.05cm} \rm V$.
  • For even multiples of  $T$  holds:
$$ \varphi_s ( \tau = \pm 2 T) = \varphi_s ( \tau = \pm 4 T) = \hspace{0.1cm} \text{ ...} \hspace{0.1cm} = \frac {0.5 {\rm V}^2}{4} \left( (1-2p)^2 +1 + 2 \cdot (2p -1)\right) = 0.5 \, {\rm V}^2 \hspace{0.02cm} \cdot \hspace{0.02cm} p^2.$$
  • With  $p = 0.5$  we obtain for this the value  $0.03125 \hspace{0.1cm}{\rm V}^2$.  All ACF values at odd multiples of  $T$  are zero again.
  • This gives the outlined ACF–curve.


ACF of a unipolar rectangular signal

Thus, the numerical values we are looking for are:

$$\varphi_{s} ( \tau = 0)\hspace{0.15cm}\underline{= 0.125 {\rm V}^2},$$
$$\varphi_{s} ( \tau = 3T)\hspace{0.15cm}\underline{= 0},$$
$$\varphi_{s} ( \tau = 6T)\hspace{0.15cm}\underline{= -0.03125 {\rm V}^2}.$$

A comparison with the sketch for subtask  (1)  shows that the binary signal  $s(t)$  has the same ACF as the ternary signal  $z(t)$ except for the factor  $1/4$.