Difference between revisions of "Aufgaben:Exercise 4.15: Optimal Signal Space Allocation"

From LNTwww
Line 5: Line 5:
 
A signal space constellation with  $M = 8$  signal space points is considered here:
 
A signal space constellation with  $M = 8$  signal space points is considered here:
 
* Four points lie on a circle with radius  $r = 1$.
 
* Four points lie on a circle with radius  $r = 1$.
* Four further points lie offset by  $45^\circ$  on a second circle with radius  $R$, where the following shall hold:
+
 
 +
* Four further points lie offset by  $45^\circ$  on a second circle with radius  $R$,  where the following shall hold:
 
:$$R_{\rm min} \le R \le R_{\rm max}\hspace{0.05cm},\hspace{0.2cm} R_{\rm min}=  \frac{ \sqrt{3}-1}{ \sqrt{2}} \approx 0.518
 
:$$R_{\rm min} \le R \le R_{\rm max}\hspace{0.05cm},\hspace{0.2cm} R_{\rm min}=  \frac{ \sqrt{3}-1}{ \sqrt{2}} \approx 0.518
 
  \hspace{0.05cm},\hspace{0.2cm}  
 
  \hspace{0.05cm},\hspace{0.2cm}  
 
R_{\rm max}=  \frac{ \sqrt{3}+1}{ \sqrt{2}} \approx 1.932\hspace{0.05cm}.$$
 
R_{\rm max}=  \frac{ \sqrt{3}+1}{ \sqrt{2}} \approx 1.932\hspace{0.05cm}.$$
  
Let the two axes (basis functions) be normalized respectively and denoted  $I$  and  $Q$  for simplicity. For further simplification,  $E = 1$  can be set.
+
Let the two axes  ("basis functions")  be normalized respectively and denoted  $I$  and  $Q$  for simplicity.  For further simplification,  $E = 1$  can be set.
  
In the question section, we speak of blue and red points. According to the diagram, the blue points lie on the circle with radius  $r = 1$, the red points on the circle with radius  $R$. The case  $R = R_{\rm max}$ is drawn.
+
In the question section,  we speak of  "blue"  and  "red"  points.  According to the diagram,  the blue points lie on the circle with radius  $r = 1$,  the red points on the circle with radius  $R$.  The case  $R = R_{\rm max}$ is drawn.
  
 
The system parameter  $R$  is to be determined in this exercise in such a way that the quotient
 
The system parameter  $R$  is to be determined in this exercise in such a way that the quotient
 
:$$\eta = \frac{ (d_{\rm min}/2)^2}{ E_{\rm B}} $$
 
:$$\eta = \frac{ (d_{\rm min}/2)^2}{ E_{\rm B}} $$
  
becomes maximum. $\eta$  is a measure for the quality of a modulation alphabet at given transmission energy per bit ("Power Efficiency"). It is calculated from
+
becomes maximum.  $\eta$  is a measure for the quality of a modulation alphabet at given transmission energy per bit  ("power efficiency").  It is calculated from
* the minimum distance  $d_{\rm min}$, and
+
* the minimum distance  $d_{\rm min}$,  and
* the bit energy  $E_{\rm B}$.
 
  
 +
* the average bit energy  $E_{\rm B}$.
  
It must be ensured that  $d_{\rm min}^2$  and  $E_{\rm B}$  are normalized in the same way, but this is already implicit in the exercise.
 
  
 +
It must be ensured that  $d_{\rm min}^2$  and  $E_{\rm B}$  are normalized in the same way,  but this is already implicit in the exercise.
  
  
  
  
''Notes:''
+
 
* The exercise belongs to the chapter   [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation|"Carrier Frequency Systems with Coherent Demodulation"]].  
+
Notes:
* Reference is made in particular to the sections  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Quadrature_amplitude_modulation_.28M-QAM.29|"Quadrature amplitude modulation"]]  and   [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#M.E2.80.93level_amplitude_shift_keying_.28M.E2.80.93ASK.29|"Multilevel phase modulation"]].
+
* The exercise belongs to the chapter   [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation|"Carrier Frequency Systems with Coherent Demodulation"]].
 +
 +
* Reference is made in particular to the sections  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Quadrature_amplitude_modulation_.28M-QAM.29|"Quadrature amplitude modulation"]]  and   [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#M.E2.80.93level_amplitude_shift_keying_.28M.E2.80.93ASK.29|"Multi-level phase modulation"]].
 
   
 
   
  
Line 37: Line 40:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the average energy&nbsp; $E_{\rm B}$&nbsp; per bit depending on&nbsp; $R$, in particular for&nbsp; $R = 1$&nbsp; and&nbsp; $R = \sqrt{2}$.
+
{Calculate the average energy&nbsp; $E_{\rm B}$&nbsp; per bit depending on&nbsp; $R$,&nbsp; in particular for&nbsp; $R = 1$&nbsp; and&nbsp; $R = \sqrt{2}$.
 
|type="{}"}
 
|type="{}"}
 
$R = 1 \text{:} \hspace{0.55cm} E_{\rm B}\  = \ $ { 0.333 3% }
 
$R = 1 \text{:} \hspace{0.55cm} E_{\rm B}\  = \ $ { 0.333 3% }
Line 46: Line 49:
 
+ For&nbsp; $R < R_{\rm min}$,&nbsp; the minimum distance occurs between two red points.
 
+ For&nbsp; $R < R_{\rm min}$,&nbsp; the minimum distance occurs between two red points.
 
+ For&nbsp; $R > R_{\rm max}$,&nbsp; the minimum distance occurs between two blue points.
 
+ For&nbsp; $R > R_{\rm max}$,&nbsp; the minimum distance occurs between two blue points.
+ For&nbsp; $R_{\rm min} &#8804; R &#8804; R_{\rm max}$,&nbsp; the minimum distance occurs between "red" and "blue".
+
+ For&nbsp; $R_{\rm min} &#8804; R &#8804; R_{\rm max}$,&nbsp; the minimum distance occurs between&nbsp; "red"&nbsp; and&nbsp; "blue".
  
{Calculate the minimum distance depending on&nbsp; $R$, in particular for
+
{Calculate the minimum distance depending on&nbsp; $R$,&nbsp; in particular for
 
|type="{}"}
 
|type="{}"}
 
$R = 1 \text{:} \hspace{0.55cm} d_{\rm min}\ = \ $ { 0.765 3% }
 
$R = 1 \text{:} \hspace{0.55cm} d_{\rm min}\ = \ $ { 0.765 3% }
 
$R = \sqrt{2} \text{:} \hspace{0.2cm} d_{\rm min}\ = \ $ { 1 3% }
 
$R = \sqrt{2} \text{:} \hspace{0.2cm} d_{\rm min}\ = \ $ { 1 3% }
  
{Give the power efficiency&nbsp; $\eta$&nbsp; in general terms. What&nbsp; $\eta$&nbsp; results for&nbsp; $R = 1$?
+
{Give the power efficiency&nbsp; $\eta$&nbsp; in general terms.&nbsp; What&nbsp; $\eta$&nbsp; results for&nbsp; $R = 1$?
 
|type="{}"}
 
|type="{}"}
 
$\eta\ = \ $ { 0.439 3% }
 
$\eta\ = \ $ { 0.439 3% }
  
{What power efficiency values result for&nbsp; $R = R_{\rm min}$&nbsp; and&nbsp; $R = R_{\rm max}$? Interpretation.
+
{What power efficiency values result for&nbsp; $R = R_{\rm min}$&nbsp; and&nbsp; $R = R_{\rm max}$?&nbsp; Interpretation.
 
|type="{}"}
 
|type="{}"}
 
$R = R_{\rm min} \text{:} \hspace{0.35cm} \eta\ = \ ${ 0.634 3% }
 
$R = R_{\rm min} \text{:} \hspace{0.35cm} \eta\ = \ ${ 0.634 3% }

Revision as of 17:39, 23 August 2022

Considered 8–QAM

A signal space constellation with  $M = 8$  signal space points is considered here:

  • Four points lie on a circle with radius  $r = 1$.
  • Four further points lie offset by  $45^\circ$  on a second circle with radius  $R$,  where the following shall hold:
$$R_{\rm min} \le R \le R_{\rm max}\hspace{0.05cm},\hspace{0.2cm} R_{\rm min}= \frac{ \sqrt{3}-1}{ \sqrt{2}} \approx 0.518 \hspace{0.05cm},\hspace{0.2cm} R_{\rm max}= \frac{ \sqrt{3}+1}{ \sqrt{2}} \approx 1.932\hspace{0.05cm}.$$

Let the two axes  ("basis functions")  be normalized respectively and denoted  $I$  and  $Q$  for simplicity.  For further simplification,  $E = 1$  can be set.

In the question section,  we speak of  "blue"  and  "red"  points.  According to the diagram,  the blue points lie on the circle with radius  $r = 1$,  the red points on the circle with radius  $R$.  The case  $R = R_{\rm max}$ is drawn.

The system parameter  $R$  is to be determined in this exercise in such a way that the quotient

$$\eta = \frac{ (d_{\rm min}/2)^2}{ E_{\rm B}} $$

becomes maximum.  $\eta$  is a measure for the quality of a modulation alphabet at given transmission energy per bit  ("power efficiency").  It is calculated from

  • the minimum distance  $d_{\rm min}$,  and
  • the average bit energy  $E_{\rm B}$.


It must be ensured that  $d_{\rm min}^2$  and  $E_{\rm B}$  are normalized in the same way,  but this is already implicit in the exercise.



Notes:



Questions

1

Calculate the average energy  $E_{\rm B}$  per bit depending on  $R$,  in particular for  $R = 1$  and  $R = \sqrt{2}$.

$R = 1 \text{:} \hspace{0.55cm} E_{\rm B}\ = \ $

$R = \sqrt{2} \text{:} \hspace{0.2cm} E_{\rm B}\ = \ $

2

Which statements are true for the minimum distance between two signal space points?

For  $R < R_{\rm min}$,  the minimum distance occurs between two red points.
For  $R > R_{\rm max}$,  the minimum distance occurs between two blue points.
For  $R_{\rm min} ≤ R ≤ R_{\rm max}$,  the minimum distance occurs between  "red"  and  "blue".

3

Calculate the minimum distance depending on  $R$,  in particular for

$R = 1 \text{:} \hspace{0.55cm} d_{\rm min}\ = \ $

$R = \sqrt{2} \text{:} \hspace{0.2cm} d_{\rm min}\ = \ $

4

Give the power efficiency  $\eta$  in general terms.  What  $\eta$  results for  $R = 1$?

$\eta\ = \ $

5

What power efficiency values result for  $R = R_{\rm min}$  and  $R = R_{\rm max}$?  Interpretation.

$R = R_{\rm min} \text{:} \hspace{0.35cm} \eta\ = \ $

$R = R_{\rm max} \text{:} \hspace{0.2cm} \eta\ = \ $


Solution

(1)  Because of $M = 8$  ⇒  $b = 3$, the mean signal energy per bit is $E_{\rm B} = E_{\rm S}/3$, where the mean signal energy per symbol ($E_{\rm S}$) is to be calculated as the mean square distance of the signal space points from the origin. With $r = 1$ one obtains:

Special cases of 8–QAM
$$E_{\rm S} = {1}/{8 } \cdot ( 4 \cdot r^2 + 4 \cdot R^2) = ({1 + R^2})/{2 } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} E_{\rm B} = {E_{\rm S}}/{3} = ({1 + R^2})/{6} \hspace{0.05cm}.$$

In particular:

  • For $R = 1$, there is an 8–PSK   ⇒   $E_{\rm S} = 1$ and $E_{\rm B} \ \underline {= 0.333}$ (see left graph).
  • The right graph is valid for $R = \sqrt{2}$. In this case, $E_{\rm B} \ \underline {= 0.5}$.


Note that these energies actually still have to be multiplied by the normalization energy $E$.


(2)  All statements are true:

  • In the drawn example on the information section with $R = R_{\rm max}$, the distance between two neighboring blue points is exactly the same as the distance between a red (outer) and a blue (inner) point.
To calculate the minimum distance
  • For $R > R_{\rm max}$, the distance between two blue points is the smallest.
  • For $R < R_{\rm min}$, the minimum distance occurs between two red points.


(3)  The graphic illustrates the geometric calculation. With "Pythagoras" one obtains:

$$d_{\rm min}^2 =(R/\sqrt{2})^2 + (R/\sqrt{2}-1)^2 = 1 - \sqrt{2} \cdot R + R^2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}d_{\rm min} = \sqrt{ 1 - \sqrt{2} \cdot R + R^2} \hspace{0.05cm}.$$

In particular, for $R = 1$ (8–PSK):

$$d_{\rm min} = \sqrt{ 2 - \sqrt{2} } \hspace{0.1cm} \underline{= 0.765} \hspace{0.1cm} (= 2 \cdot \sin (22.5^{\circ}) ) \hspace{0.05cm}.$$

In contrast, for $\underline {R = \sqrt{2}}$ corresponding to the right graph for subtask (1), the minimum distance is $d_{\rm min} \ \underline {= 1}$.


(4)  Using the results of (1) and (3), we obtain in general or for $R = 1$ (8–PSK):

$$\eta = \frac{ d_{\rm min}^2}{ 4 \cdot E_{\rm B}} = \frac{ 1 - \sqrt{2} \cdot R + R^2}{ 4 \cdot (1 + R^2)/6} = \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 + R^2}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} R = 1: \hspace{0.2cm}\eta = \frac{ 3/2 \cdot(2 - \sqrt{2}) }{ 2} = 3/4 \cdot(2 - \sqrt{2})\hspace{0.1cm} \underline{\approx 0.439}\hspace{0.05cm}.$$


(5)  For $R = R_{\rm min} = (\sqrt{3}-1)/\sqrt{2}$, the following value is obtained:

$$\eta = \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 + R^2} = 3/2 \cdot \left [ 1 - \frac{ \sqrt{2} \cdot R }{ 1 + R^2}\right ]\hspace{0.05cm},$$
$$\sqrt{2} \cdot R = \sqrt{3}- 1\hspace{0.05cm},\hspace{0.2cm} 1 + R^2 = 3 - \sqrt{3} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta = 3/2 \cdot \left [ 1 - \frac{ \sqrt{3}- 1 }{ 3 - \sqrt{3}}\right ]\hspace{0.1cm} \underline{\approx 0.634}\hspace{0.05cm}.$$

For $R = R_{\rm max}= (\sqrt{3}+1)/\sqrt{2}$ exactly the same value results.

  • The (always desired) maximum of the power efficiency $\eta$ results, for example, for $R = R_{\rm max}$ – i.e. for the signal space constellation in the information section.
  • In this case all triangles of two neighboring blue points and the red point in between are equilateral.
  • Also for $R = R_{\rm min}$ there are equilateral triangles, but now each formed by two red and one blue point.
  • In this case the edge length $d_{\rm min}$ is clearly smaller, but at the same time a smaller $E_{\rm B}$ results, so that the power efficiency $\eta$ has the same value.


The previously considered special cases $R = 1$ (8–PSK, left graph in the first subtask) and $R = \sqrt{2}$ (right graph) have a noticeably smaller $\eta$ with $\eta = 0.439$ and $\eta = 0.5$, respectively (compared to $\eta = 0.634$).