Difference between revisions of "Aufgaben:Exercise 4.15: Optimal Signal Space Allocation"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation}}
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation}}
  
[[File:P_ID2069__Dig_A_4_15.png|right|frame|Considered 8–QAM]]
+
[[File:P_ID2069__Dig_A_4_15.png|right|frame|Considered   "8–QAM"]]
 
A signal space constellation with  $M = 8$  signal space points is considered here:
 
A signal space constellation with  $M = 8$  signal space points is considered here:
 
* Four points lie on a circle with radius  $r = 1$.
 
* Four points lie on a circle with radius  $r = 1$.
* Four further points lie offset by  $45^\circ$  on a second circle with radius  $R$, where the following shall hold:
+
 
 +
* Four further points lie offset by  $45^\circ$  on a second circle with radius  $R$,  where the following shall hold:
 
:$$R_{\rm min} \le R \le R_{\rm max}\hspace{0.05cm},\hspace{0.2cm} R_{\rm min}=  \frac{ \sqrt{3}-1}{ \sqrt{2}} \approx 0.518
 
:$$R_{\rm min} \le R \le R_{\rm max}\hspace{0.05cm},\hspace{0.2cm} R_{\rm min}=  \frac{ \sqrt{3}-1}{ \sqrt{2}} \approx 0.518
 
  \hspace{0.05cm},\hspace{0.2cm}  
 
  \hspace{0.05cm},\hspace{0.2cm}  
 
R_{\rm max}=  \frac{ \sqrt{3}+1}{ \sqrt{2}} \approx 1.932\hspace{0.05cm}.$$
 
R_{\rm max}=  \frac{ \sqrt{3}+1}{ \sqrt{2}} \approx 1.932\hspace{0.05cm}.$$
  
Let the two axes (basis functions) be normalized respectively and denoted  $I$  and  $Q$  for simplicity. For further simplification,  $E = 1$  can be set.
+
Let the two axes  ("basis functions")  be normalized respectively and denoted  $I$  and  $Q$  for simplicity.  For further simplification,  $E = 1$  can be set.
  
In the question section, we speak of blue and red points. According to the diagram, the blue points lie on the circle with radius  $r = 1$, the red points on the circle with radius  $R$. The case  $R = R_{\rm max}$ is drawn.
+
In the question section,  we speak of  "blue"  and  "red"  points.  According to the diagram,  the blue points lie on the circle with radius  $r = 1$,  the red points on the circle with radius  $R$.  The case  $R = R_{\rm max}$ is drawn.
  
 
The system parameter  $R$  is to be determined in this exercise in such a way that the quotient
 
The system parameter  $R$  is to be determined in this exercise in such a way that the quotient
 
:$$\eta = \frac{ (d_{\rm min}/2)^2}{ E_{\rm B}} $$
 
:$$\eta = \frac{ (d_{\rm min}/2)^2}{ E_{\rm B}} $$
  
becomes maximum. $\eta$  is a measure for the quality of a modulation alphabet at given transmission energy per bit ("Power Efficiency"). It is calculated from
+
becomes maximum.  $\eta$  is a measure for the quality of a modulation alphabet at given transmission energy per bit  ("power efficiency").  It is calculated from
* the minimum distance  $d_{\rm min}$, and
+
* the minimum distance  $d_{\rm min}$,  and
* the bit energy  $E_{\rm B}$.
 
  
 +
* the average bit energy  $E_{\rm B}$.
  
It must be ensured that  $d_{\rm min}^2$  and  $E_{\rm B}$  are normalized in the same way, but this is already implicit in the exercise.
 
  
 +
It must be ensured that  $d_{\rm min}^2$  and  $E_{\rm B}$  are normalized in the same way,  but this is already implicit in the exercise.
  
  
  
  
''Notes:''
+
 
* The exercise belongs to the chapter   [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation|"Carrier Frequency Systems with Coherent Demodulation"]].  
+
Notes:
* Reference is made in particular to the sections  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Quadrature_amplitude_modulation_.28M-QAM.29|"Quadrature amplitude modulation"]]  and   [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#M.E2.80.93level_amplitude_shift_keying_.28M.E2.80.93ASK.29|"Multilevel phase modulation"]].
+
* The exercise belongs to the chapter   [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation|"Carrier Frequency Systems with Coherent Demodulation"]].
 +
 +
* Reference is made in particular to the sections  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Quadrature_amplitude_modulation_.28M-QAM.29|"Quadrature amplitude modulation"]]  and   [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#M.E2.80.93level_amplitude_shift_keying_.28M.E2.80.93ASK.29|"Multi-level phase modulation"]].
 
   
 
   
  
Line 37: Line 40:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die mittlere Energie&nbsp; $E_{\rm B}$&nbsp; pro Bit abhängig von&nbsp; $R$, insbesondere für&nbsp; $R = 1$&nbsp; und&nbsp; $R = \sqrt{2}$.
+
{Calculate the average energy&nbsp; $E_{\rm B}$&nbsp; per bit depending on&nbsp; $R$,&nbsp; in particular for&nbsp; $R = 1$&nbsp; and&nbsp; $R = \sqrt{2}$.
 
|type="{}"}
 
|type="{}"}
 
$R = 1 \text{:} \hspace{0.55cm} E_{\rm B}\  = \ $ { 0.333 3% }
 
$R = 1 \text{:} \hspace{0.55cm} E_{\rm B}\  = \ $ { 0.333 3% }
 
$R = \sqrt{2} \text{:} \hspace{0.2cm} E_{\rm B}\ = \ $ { 0.5 3% }
 
$R = \sqrt{2} \text{:} \hspace{0.2cm} E_{\rm B}\ = \ $ { 0.5 3% }
  
{Welche Aussagen gelten für den minimalen Abstand zweier Signalraumpunkte?
+
{Which statements are true for the minimum distance between two signal space points?
 
|type="[]"}
 
|type="[]"}
+ Für&nbsp; $R < R_{\rm min}$&nbsp; tritt die minimale Distanz zwischen zwei roten Punkten auf.
+
+ For&nbsp; $R < R_{\rm min}$,&nbsp; the minimum distance occurs between two red points.
+ Für&nbsp; $R > R_{\rm max}$&nbsp; tritt die minimale Distanz zwischen zwei blauen Punkten auf.
+
+ For&nbsp; $R > R_{\rm max}$,&nbsp; the minimum distance occurs between two blue points.
+ Für&nbsp; $R_{\rm min} &#8804; R &#8804; R_{\rm max}$&nbsp; tritt die minimale Distanz zwischen "Rot" und "Blau" auf.
+
+ For&nbsp; $R_{\rm min} &#8804; R &#8804; R_{\rm max}$,&nbsp; the minimum distance occurs between&nbsp; "red"&nbsp; and&nbsp; "blue".
  
{Berechnen Sie die minimale Distanz abhängig von&nbsp; $R$, insbesondere für
+
{Calculate the minimum distance depending on&nbsp; $R$,&nbsp; in particular for
 
|type="{}"}
 
|type="{}"}
 
$R = 1 \text{:} \hspace{0.55cm} d_{\rm min}\ = \ $ { 0.765 3% }
 
$R = 1 \text{:} \hspace{0.55cm} d_{\rm min}\ = \ $ { 0.765 3% }
 
$R = \sqrt{2} \text{:} \hspace{0.2cm} d_{\rm min}\ = \ $ { 1 3% }
 
$R = \sqrt{2} \text{:} \hspace{0.2cm} d_{\rm min}\ = \ $ { 1 3% }
  
{Geben Sie die Leistungseffizienz&nbsp; $\eta$&nbsp; allgemein an. Welches&nbsp; $\eta$&nbsp; ergibt sich für&nbsp; $R = 1$?
+
{Give the power efficiency&nbsp; $\eta$&nbsp; in general terms.&nbsp; What&nbsp; $\eta$&nbsp; results for&nbsp; $R = 1$?
 
|type="{}"}
 
|type="{}"}
 
$\eta\ = \ $ { 0.439 3% }
 
$\eta\ = \ $ { 0.439 3% }
  
{Welche Leistungseffizienzwerte ergeben sich für&nbsp; $R = R_{\rm min}$&nbsp; und&nbsp; $R = R_{\rm max}$? Interpretation.
+
{What power efficiency values result for&nbsp; $R = R_{\rm min}$&nbsp; and&nbsp; $R = R_{\rm max}$?&nbsp; Interpretation.
 
|type="{}"}
 
|type="{}"}
 
$R = R_{\rm min} \text{:} \hspace{0.35cm} \eta\ = \ ${ 0.634 3% }
 
$R = R_{\rm min} \text{:} \hspace{0.35cm} \eta\ = \ ${ 0.634 3% }
Line 63: Line 66:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Wegen $M = 8$ &nbsp;&#8658;&nbsp; $b = 3$ gilt für die mittlere Signalenergie pro Bit $E_{\rm B} = E_{\rm S}/3$, wobei die mittlere Signalenergie pro Symbol ($E_{\rm S}$) als der mittlere quadratische Abstand der Signalraumpunkte vom Ursprung zu berechnen ist. Mit $r = 1$ erhält man:
+
[[File:P_ID2073__Dig_A_4_15a.png|right|frame|Special cases of&nbsp; "8–QAM"]]
[[File:P_ID2073__Dig_A_4_15a.png|right|frame|Sonderfälle der 8–QAM]]
+
'''(1)'''&nbsp; Because of&nbsp; $M = 8$ &nbsp; &#8658; &nbsp; $b = 3$,&nbsp; the average signal energy per bit is&nbsp; $E_{\rm B} = E_{\rm S}/3$,&nbsp; where the average signal energy per symbol&nbsp; $(E_{\rm S})$&nbsp; is to be calculated as the mean square distance of the signal space points from the origin.&nbsp; With&nbsp; $r = 1$&nbsp; one obtains:
:$$E_{\rm S} = {1}/{8  } \cdot ( 4 \cdot r^2 + 4 \cdot R^2) = ({1 +  R^2})/{2  }
+
:$$E_{\rm S} = {1}/{8  } \cdot ( 4 \cdot r^2 + 4 \cdot R^2) = ({1 +  R^2})/{2  }$$
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} E_{\rm B} = {E_{\rm S}}/{3} = ({1 +  R^2})/{6}  
+
:$$\Rightarrow \hspace{0.3cm} E_{\rm B} = {E_{\rm S}}/{3} = ({1 +  R^2})/{6}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Insbesondere gilt:
+
In particular:
* Für $R = 1$ ergibt sich eine 8&ndash;PSK &nbsp; &rArr; &nbsp; $E_{\rm S} = 1$ und $E_{\rm B} \ \underline {= 0.333}$ (siehe linke Grafik).
+
* For&nbsp; $R = 1$,&nbsp; there is an&nbsp; "8&ndash;PSK" &nbsp; &rArr; &nbsp; $E_{\rm S} = 1$&nbsp; and&nbsp; $E_{\rm B} \ \underline {= 0.333}$&nbsp; (see left graph).
* Die rechte Grafik gilt für $R = \sqrt{2}$. In diesem Fall ist $E_{\rm B} \ \underline {= 0.5}$.
+
 
 +
* The right graph is valid for&nbsp; $R = \sqrt{2}$.&nbsp; In this case,&nbsp; $E_{\rm B} \ \underline {= 0.5}$.
 +
 
 +
 
 +
Note that these energies actually still have to be multiplied by the normalization energy $E$.
 +
<br clear=all>
 +
'''(2)'''&nbsp; <u>All statements are true</u>:
 +
[[File:P_ID2074__Dig_A_4_15c.png|right|frame|To calculate minimum distance]]
  
 +
*In the drawn example on the front page with&nbsp; $R = R_{\rm max}$,&nbsp; the distance between two neighboring blue points is exactly the same as the distance between a red (outer) and a blue (inner) point.
  
Anzumerken ist, dass diese Energien eigentlich noch mit der Normierungsenergie $E$ zu multiplizieren sind.
+
*For $R > R_{\rm max}$,&nbsp; the distance between two blue points is the smallest.
  
 +
*For $R < R_{\rm min}$,&nbsp; the minimum distance occurs between two red points.
  
'''(2)'''&nbsp; <u>Alle Aussagen treffen zu</u>:
 
*Im gezeichneten Beispiel auf dem Angabenblatt mit $R = R_{\rm max}$ ist der Abstand zwischen zwei benachbarten blauen Punkten genau so groß wie der Abstand zwischen einem roten (äußeren) und einem blauen (inneren) Punkt.
 
[[File:P_ID2074__Dig_A_4_15c.png|right|frame|Zur Berechnung der minimalen Distanz]]
 
*Für $R > R_{\rm max}$ ist der Abstand zwischen zwei blauen Punkten am geringsten.
 
*Für $R < R_{\rm min}$ tritt der minimale Abstand zwischen zwei roten Punkten auf.
 
  
  
'''(3)'''&nbsp; Die Grafik verdeutlicht die geometrische Berechnung. Mit "Pythagoras" erhält man:
+
'''(3)'''&nbsp; The graphic illustrates the geometric calculation.&nbsp; With&nbsp; "Pythagoras"&nbsp; one obtains:
:$$d_{\rm min}^2 =(R/\sqrt{2})^2 +  (R/\sqrt{2}-1)^2 = 1 - \sqrt{2} \cdot R + R^2  \hspace{0.3cm}
+
:$$d_{\rm min}^2 =(R/\sqrt{2})^2 +  (R/\sqrt{2}-1)^2 = 1 - \sqrt{2} \cdot R + R^2$$
\Rightarrow \hspace{0.3cm}d_{\rm min} = \sqrt{ 1 - \sqrt{2} \cdot R + R^2}   
+
:$$ \Rightarrow \hspace{0.3cm}d_{\rm min} = \sqrt{ 1 - \sqrt{2} \cdot R + R^2}   
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Insbesondere gilt für $R = 1$ (8&ndash;PSK):
+
*In particular,&nbsp; for $R = 1$&nbsp; ("8&ndash;PSK"):
 
:$$d_{\rm min} = \sqrt{ 2 - \sqrt{2} }  \hspace{0.1cm} \underline{= 0.765} \hspace{0.1cm} (= 2 \cdot \sin (22.5^{\circ}) )
 
:$$d_{\rm min} = \sqrt{ 2 - \sqrt{2} }  \hspace{0.1cm} \underline{= 0.765} \hspace{0.1cm} (= 2 \cdot \sin (22.5^{\circ}) )
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Dagegen ist für $\underline {R = \sqrt{2}}$ entsprechend der rechten Grafik zur Teilaufgabe '''(1)''' die minimale Distanz $d_{\rm min} \ \underline {= 1}$.
+
*In contrast,&nbsp; for&nbsp; $\underline {R = \sqrt{2}}$&nbsp; corresponding to the right graph for subtask&nbsp; '''(1)''',&nbsp; the minimum distance is&nbsp; $d_{\rm min} \ \underline {= 1}$.
  
  
'''(4)'''&nbsp; Mit den Ergebnissen von '''(1)''' und '''(3)''' erhält man allgemein bzw. für $R = 1$ (8&ndash;PSK):
+
 
 +
'''(4)'''&nbsp; Using the results of&nbsp; '''(1)'''&nbsp; and&nbsp; '''(3)''',&nbsp; we obtain in general or&nbsp; for $R = 1$ ("8&ndash;PSK"):
 
:$$\eta = \frac{ d_{\rm min}^2}{ 4 \cdot E_{\rm B}} = \frac{ 1 - \sqrt{2} \cdot R + R^2}{ 4 \cdot (1 +  R^2)/6}
 
:$$\eta = \frac{ d_{\rm min}^2}{ 4 \cdot E_{\rm B}} = \frac{ 1 - \sqrt{2} \cdot R + R^2}{ 4 \cdot (1 +  R^2)/6}
 
  = \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 +  R^2}\hspace{0.3cm}  
 
  = \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 +  R^2}\hspace{0.3cm}  
Line 105: Line 113:
  
  
'''(5)'''&nbsp; Für $R = R_{\rm min} = (\sqrt{3}-1)/\sqrt{2}$ ergibt sich folgender Wert:
+
 
 +
'''(5)'''&nbsp; For&nbsp; $R = R_{\rm min} = (\sqrt{3}-1)/\sqrt{2}$,&nbsp; the following value is obtained:
 
:$$\eta =  \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 +  R^2} = 3/2 \cdot \left [ 1 - \frac{  \sqrt{2} \cdot R }{ 1 +  R^2}\right ]\hspace{0.05cm},$$
 
:$$\eta =  \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 +  R^2} = 3/2 \cdot \left [ 1 - \frac{  \sqrt{2} \cdot R }{ 1 +  R^2}\right ]\hspace{0.05cm},$$
 
:$$\sqrt{2} \cdot R = \sqrt{3}- 1\hspace{0.05cm},\hspace{0.2cm} 1 +  R^2 = 3 - \sqrt{3} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$\sqrt{2} \cdot R = \sqrt{3}- 1\hspace{0.05cm},\hspace{0.2cm} 1 +  R^2 = 3 - \sqrt{3} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  \eta =  3/2 \cdot \left [ 1 - \frac{  \sqrt{3}- 1 }{ 3 - \sqrt{3}}\right ]\hspace{0.1cm} \underline{\approx  0.634}\hspace{0.05cm}.$$
 
  \eta =  3/2 \cdot \left [ 1 - \frac{  \sqrt{3}- 1 }{ 3 - \sqrt{3}}\right ]\hspace{0.1cm} \underline{\approx  0.634}\hspace{0.05cm}.$$
  
Für $R = R_{\rm max}= (\sqrt{3}+1)/\sqrt{2}$ ergibt sich genau der gleiche Wert.
+
*For&nbsp; $R = R_{\rm max}= (\sqrt{3}+1)/\sqrt{2}$&nbsp; exactly the same value results.
 
 
*Das (stets gewünschte) Maximum der Leistungseffizienz $\eta$ ergibt sich beispielsweise für $R = R_{\rm max}$ &ndash; also für die Signalraumkonstellation auf dem Angabenblatt.
 
*In diesem Fall sind alle Dreiecke aus zwei benachbarten blauen Punkten und dem dazwischenliegenden roten Punkt gleichseitig.
 
*Auch für $R = R_{\rm min}$ ergeben sich gleichseitige Dreiecke, jetzt aber jeweils gebildet durch zwei rotee und einen blauen Punkt.
 
*In diesem Fall ist zwar die Kantenlänge $d_{\rm min}$ deutlich kleiner, aber gleichzeitig ergibt sich auch ein kleineres $E_{\rm B}$, so dass die Leistungseffizienz $\eta$ den gleichen Wert besitzt.
 
 
 
  
Die vorher betrachteten Sonderfälle $R = 1$ (8&ndash;PSK, linke Grafik bei der ersten Teilaufgabe) und $R = \sqrt{2}$ (rechte Grafik) weisen mit $\eta = 0.439$ bzw. $\eta = 0.5$ (gegenüber $\eta = 0.634$) ein merklich kleineres $\eta$ auf.
+
#The&nbsp; (always desired)&nbsp; maximum of the power efficiency&nbsp; $\eta$&nbsp; results e.g. for&nbsp; $R = R_{\rm max}$ &ndash; i.e. for the signal space constellation in the information section.
 +
#In this case all triangles of two neighboring blue points and the red point in between are equilateral.
 +
#Also for&nbsp; $R = R_{\rm min}$&nbsp; there are equilateral triangles,&nbsp; but now each formed by two red and one blue point.
 +
#In this case the edge length&nbsp; $d_{\rm min}$&nbsp; is clearly smaller,&nbsp; but at the same time a smaller&nbsp; $E_{\rm B}$&nbsp; results,&nbsp; so that the power efficiency&nbsp; $\eta$&nbsp; has the same value.
 +
#The previously considered special cases&nbsp; $R = 1$&nbsp; ("8&ndash;PSK",&nbsp; left graph in the first subtask)&nbsp; and&nbsp; $R = \sqrt{2}$&nbsp; (right graph)&nbsp; have a noticeably smaller&nbsp; $\eta$&nbsp; with&nbsp; $\eta = 0.439$&nbsp; and&nbsp; $\eta = 0.5$,&nbsp; resp.&nbsp; $($compared to&nbsp; $\eta = 0.634)$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 17:06, 1 October 2022

Considered  "8–QAM"

A signal space constellation with  $M = 8$  signal space points is considered here:

  • Four points lie on a circle with radius  $r = 1$.
  • Four further points lie offset by  $45^\circ$  on a second circle with radius  $R$,  where the following shall hold:
$$R_{\rm min} \le R \le R_{\rm max}\hspace{0.05cm},\hspace{0.2cm} R_{\rm min}= \frac{ \sqrt{3}-1}{ \sqrt{2}} \approx 0.518 \hspace{0.05cm},\hspace{0.2cm} R_{\rm max}= \frac{ \sqrt{3}+1}{ \sqrt{2}} \approx 1.932\hspace{0.05cm}.$$

Let the two axes  ("basis functions")  be normalized respectively and denoted  $I$  and  $Q$  for simplicity.  For further simplification,  $E = 1$  can be set.

In the question section,  we speak of  "blue"  and  "red"  points.  According to the diagram,  the blue points lie on the circle with radius  $r = 1$,  the red points on the circle with radius  $R$.  The case  $R = R_{\rm max}$ is drawn.

The system parameter  $R$  is to be determined in this exercise in such a way that the quotient

$$\eta = \frac{ (d_{\rm min}/2)^2}{ E_{\rm B}} $$

becomes maximum.  $\eta$  is a measure for the quality of a modulation alphabet at given transmission energy per bit  ("power efficiency").  It is calculated from

  • the minimum distance  $d_{\rm min}$,  and
  • the average bit energy  $E_{\rm B}$.


It must be ensured that  $d_{\rm min}^2$  and  $E_{\rm B}$  are normalized in the same way,  but this is already implicit in the exercise.



Notes:



Questions

1

Calculate the average energy  $E_{\rm B}$  per bit depending on  $R$,  in particular for  $R = 1$  and  $R = \sqrt{2}$.

$R = 1 \text{:} \hspace{0.55cm} E_{\rm B}\ = \ $

$R = \sqrt{2} \text{:} \hspace{0.2cm} E_{\rm B}\ = \ $

2

Which statements are true for the minimum distance between two signal space points?

For  $R < R_{\rm min}$,  the minimum distance occurs between two red points.
For  $R > R_{\rm max}$,  the minimum distance occurs between two blue points.
For  $R_{\rm min} ≤ R ≤ R_{\rm max}$,  the minimum distance occurs between  "red"  and  "blue".

3

Calculate the minimum distance depending on  $R$,  in particular for

$R = 1 \text{:} \hspace{0.55cm} d_{\rm min}\ = \ $

$R = \sqrt{2} \text{:} \hspace{0.2cm} d_{\rm min}\ = \ $

4

Give the power efficiency  $\eta$  in general terms.  What  $\eta$  results for  $R = 1$?

$\eta\ = \ $

5

What power efficiency values result for  $R = R_{\rm min}$  and  $R = R_{\rm max}$?  Interpretation.

$R = R_{\rm min} \text{:} \hspace{0.35cm} \eta\ = \ $

$R = R_{\rm max} \text{:} \hspace{0.2cm} \eta\ = \ $


Solution

Special cases of  "8–QAM"

(1)  Because of  $M = 8$   ⇒   $b = 3$,  the average signal energy per bit is  $E_{\rm B} = E_{\rm S}/3$,  where the average signal energy per symbol  $(E_{\rm S})$  is to be calculated as the mean square distance of the signal space points from the origin.  With  $r = 1$  one obtains:

$$E_{\rm S} = {1}/{8 } \cdot ( 4 \cdot r^2 + 4 \cdot R^2) = ({1 + R^2})/{2 }$$
$$\Rightarrow \hspace{0.3cm} E_{\rm B} = {E_{\rm S}}/{3} = ({1 + R^2})/{6} \hspace{0.05cm}.$$

In particular:

  • For  $R = 1$,  there is an  "8–PSK"   ⇒   $E_{\rm S} = 1$  and  $E_{\rm B} \ \underline {= 0.333}$  (see left graph).
  • The right graph is valid for  $R = \sqrt{2}$.  In this case,  $E_{\rm B} \ \underline {= 0.5}$.


Note that these energies actually still have to be multiplied by the normalization energy $E$.
(2)  All statements are true:

To calculate minimum distance
  • In the drawn example on the front page with  $R = R_{\rm max}$,  the distance between two neighboring blue points is exactly the same as the distance between a red (outer) and a blue (inner) point.
  • For $R > R_{\rm max}$,  the distance between two blue points is the smallest.
  • For $R < R_{\rm min}$,  the minimum distance occurs between two red points.


(3)  The graphic illustrates the geometric calculation.  With  "Pythagoras"  one obtains:

$$d_{\rm min}^2 =(R/\sqrt{2})^2 + (R/\sqrt{2}-1)^2 = 1 - \sqrt{2} \cdot R + R^2$$
$$ \Rightarrow \hspace{0.3cm}d_{\rm min} = \sqrt{ 1 - \sqrt{2} \cdot R + R^2} \hspace{0.05cm}.$$
  • In particular,  for $R = 1$  ("8–PSK"):
$$d_{\rm min} = \sqrt{ 2 - \sqrt{2} } \hspace{0.1cm} \underline{= 0.765} \hspace{0.1cm} (= 2 \cdot \sin (22.5^{\circ}) ) \hspace{0.05cm}.$$
  • In contrast,  for  $\underline {R = \sqrt{2}}$  corresponding to the right graph for subtask  (1),  the minimum distance is  $d_{\rm min} \ \underline {= 1}$.


(4)  Using the results of  (1)  and  (3),  we obtain in general or  for $R = 1$ ("8–PSK"):

$$\eta = \frac{ d_{\rm min}^2}{ 4 \cdot E_{\rm B}} = \frac{ 1 - \sqrt{2} \cdot R + R^2}{ 4 \cdot (1 + R^2)/6} = \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 + R^2}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} R = 1: \hspace{0.2cm}\eta = \frac{ 3/2 \cdot(2 - \sqrt{2}) }{ 2} = 3/4 \cdot(2 - \sqrt{2})\hspace{0.1cm} \underline{\approx 0.439}\hspace{0.05cm}.$$


(5)  For  $R = R_{\rm min} = (\sqrt{3}-1)/\sqrt{2}$,  the following value is obtained:

$$\eta = \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 + R^2} = 3/2 \cdot \left [ 1 - \frac{ \sqrt{2} \cdot R }{ 1 + R^2}\right ]\hspace{0.05cm},$$
$$\sqrt{2} \cdot R = \sqrt{3}- 1\hspace{0.05cm},\hspace{0.2cm} 1 + R^2 = 3 - \sqrt{3} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta = 3/2 \cdot \left [ 1 - \frac{ \sqrt{3}- 1 }{ 3 - \sqrt{3}}\right ]\hspace{0.1cm} \underline{\approx 0.634}\hspace{0.05cm}.$$
  • For  $R = R_{\rm max}= (\sqrt{3}+1)/\sqrt{2}$  exactly the same value results.
  1. The  (always desired)  maximum of the power efficiency  $\eta$  results e.g. for  $R = R_{\rm max}$ – i.e. for the signal space constellation in the information section.
  2. In this case all triangles of two neighboring blue points and the red point in between are equilateral.
  3. Also for  $R = R_{\rm min}$  there are equilateral triangles,  but now each formed by two red and one blue point.
  4. In this case the edge length  $d_{\rm min}$  is clearly smaller,  but at the same time a smaller  $E_{\rm B}$  results,  so that the power efficiency  $\eta$  has the same value.
  5. The previously considered special cases  $R = 1$  ("8–PSK",  left graph in the first subtask)  and  $R = \sqrt{2}$  (right graph)  have a noticeably smaller  $\eta$  with  $\eta = 0.439$  and  $\eta = 0.5$,  resp.  $($compared to  $\eta = 0.634)$.