Difference between revisions of "Aufgaben:Exercise 4.17: Non-Coherent On-Off Keying"

From LNTwww
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation}}  
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation}}  
  
[[File:P_ID2078__Dig_A_4_17.png|right|frame|Rayleigh and Rice distribution]]
+
[[File:P_ID2078__Dig_A_4_17.png|right|frame|Rayleigh and Rice PDF]]
The figure shows the two density functions resulting from a non-coherent demodulation of <i>On&ndash;Off&ndash;Keying</i>&nbsp; (OOK). It is assumed that the two OOK signal space points are located at&nbsp; $\boldsymbol{s}_0 = C$&nbsp; $($message &nbsp;$m_0)$&nbsp; and at $\boldsymbol{s}_1 = 0$&nbsp; $($message &nbsp;$m_1)$.&nbsp;
+
The figure shows the two density functions resulting from a non-coherent demodulation of&nbsp; "On&ndash;Off&ndash;Keying"&nbsp; $\rm (OOK)$.&nbsp; It is assumed that the two OOK signal space points are located  
 +
*at&nbsp; $\boldsymbol{s}_0 = C$&nbsp; $($message &nbsp;$m_0)$&nbsp; and  
 +
 
 +
*at $\boldsymbol{s}_1 = 0$&nbsp; $($message &nbsp;$m_1)$.&nbsp;
 +
 
  
 
The symbol error probability of this system is described by the following equation:
 
The symbol error probability of this system is described by the following equation:
Line 10: Line 14:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
With the standard deviation&nbsp; $\sigma_n = 1$, which is assumed in the following, the resulting Rayleigh distribution for&nbsp; $m = m_1$&nbsp; (blue curve) is:
+
With the standard deviation&nbsp; $\sigma_n = 1$,&nbsp; which is assumed in the following,&nbsp;
 +
*the resulting Rayleigh distribution for&nbsp; $m = m_1$&nbsp; (blue curve)&nbsp; is:
 
:$$p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm} \hspace{0.05cm}| m_1) = \eta \cdot {\rm e }^{-\eta^2/2}  
 
:$$p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm} \hspace{0.05cm}| m_1) = \eta \cdot {\rm e }^{-\eta^2/2}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
The Rice distribution (red curve) can be approximated in the present case $($because of &nbsp;$C\gg \sigma_n)$&nbsp; by a Gaussian curve:
+
*The&nbsp; (red)&nbsp; Rice distribution can be approximated in the present case&nbsp; $($because of &nbsp;$C\gg \sigma_n)$&nbsp; by a Gaussian curve:
 
:$$p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm} |\hspace{0.05cm} m_0) = \frac{1}{\sqrt{2\pi}} \cdot {\rm e }^{-(\eta-C)^2/2}  
 
:$$p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm} |\hspace{0.05cm} m_0) = \frac{1}{\sqrt{2\pi}} \cdot {\rm e }^{-(\eta-C)^2/2}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 20: Line 25:
 
The optimal decision boundary&nbsp; $G_{\rm opt}$&nbsp; is obtained from the intersection of the red and blue curves.
 
The optimal decision boundary&nbsp; $G_{\rm opt}$&nbsp; is obtained from the intersection of the red and blue curves.
 
*From the two sketches it can be seen that&nbsp; $G_{\rm opt}$&nbsp; depends on&nbsp; $C$.&nbsp;  
 
*From the two sketches it can be seen that&nbsp; $G_{\rm opt}$&nbsp; depends on&nbsp; $C$.&nbsp;  
*For the upper graph&nbsp; $C = 4$, for the lower&nbsp; $C = 6$.  
+
 
 +
*For the upper graph&nbsp; $C = 4$,&nbsp; for the lower graph&nbsp; $C = 6$.
 +
 
*All quantities are normalized and&nbsp; $\sigma_n = 1$&nbsp; is always assumed.
 
*All quantities are normalized and&nbsp; $\sigma_n = 1$&nbsp; is always assumed.
  
  
  
 
+
Notes:
 
+
* The exercise belongs to the topic of the chapter&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation| "Carrier Frequency Systems with Non-Coherent Demodulation"]].
''Notes:''
+
* The exercise belongs to the topic of the chapter&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation| "Carrier Frequency Systems with Non-Coherent Demodulation"]].  
+
* For the complementary Gaussian error integral,&nbsp; you can use the following approximations:
* For the complementary Gaussian error integral, you can use the following approximations:
 
 
:$${\rm Q }(1.5) \approx 0.0668\hspace{0.05cm}, \hspace{0.5cm}{\rm Q }(2.5) \approx 0.0062\hspace{0.05cm}, \hspace{0.5cm}
 
:$${\rm Q }(1.5) \approx 0.0668\hspace{0.05cm}, \hspace{0.5cm}{\rm Q }(2.5) \approx 0.0062\hspace{0.05cm}, \hspace{0.5cm}
 
  {\rm Q }(2.65) \approx 0.0040  
 
  {\rm Q }(2.65) \approx 0.0040  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* You can check your results with the interactive applet&nbsp;  [[Applets:On-Off-Keying|"Non-coherent On&ndash;Off&ndash;Keying"]].&nbsp;  
+
* You can check your results with theHTML5/JavaScript applet&nbsp;  [[Applets:Coherent_and_Non-Coherent_On-Off_Keying|"Coherent and Non-coherent On-Off Keying"]].&nbsp;  
 
   
 
   
  
Line 41: Line 47:
 
<quiz display=simple>
 
<quiz display=simple>
 
{What is the relationship between the mean symbol energy&nbsp; $E_{\rm S}$&nbsp; and the constant&nbsp; $C$&nbsp; of the Rice distribution?
 
{What is the relationship between the mean symbol energy&nbsp; $E_{\rm S}$&nbsp; and the constant&nbsp; $C$&nbsp; of the Rice distribution?
|type="[]"}
+
|type="()"}
 
- $E_{\rm S} = C$,
 
- $E_{\rm S} = C$,
 
- $E_{\rm S} = C^2$,
 
- $E_{\rm S} = C^2$,
+ $E_{\rm S} = C^2/2$.
+
+ $E_{\rm S} = C^2\hspace{-0.1cm}/2$.
  
 
{What is the governing equation for the optimal decision boundary&nbsp; $G_{\rm opt}$?
 
{What is the governing equation for the optimal decision boundary&nbsp; $G_{\rm opt}$?
|type="[]"}
+
|type="()"}
 
- $G = C/2$,
 
- $G = C/2$,
 
+ $G \, &ndash;1/C \cdot {\rm ln} \, (G) = C/2 + 1/(2C) \cdot {\rm ln} \, (2\pi)$,
 
+ $G \, &ndash;1/C \cdot {\rm ln} \, (G) = C/2 + 1/(2C) \cdot {\rm ln} \, (2\pi)$,
- $G \, &ndash;1/C \cdot {\rm ln} \, (G)$.
+
- $G = 1/C \cdot {\rm ln} \, (G)$.
  
{Determine the optimal decision boundary for&nbsp; $C = 4$.
+
{Determine the optimal decision threshold for&nbsp; $C = 4$.
 
|type="{}"}
 
|type="{}"}
 
$G_{\rm opt} \ = \ $ { 2.46 3% }
 
$G_{\rm opt} \ = \ $ { 2.46 3% }
  
{What is the symbol error probability for&nbsp; $C = 4$&nbsp; and&nbsp; $G = 2.5 \approx G_{\rm opt}$?
+
{What is the symbol error probability with&nbsp; $C = 4$&nbsp; and&nbsp; $G = 2.5 \approx G_{\rm opt}$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S} \ = \ $ { 5.54 3% } $\ \% $
 
$p_{\rm S} \ = \ $ { 5.54 3% } $\ \% $

Revision as of 15:57, 29 August 2022

Rayleigh and Rice PDF

The figure shows the two density functions resulting from a non-coherent demodulation of  "On–Off–Keying"  $\rm (OOK)$.  It is assumed that the two OOK signal space points are located

  • at  $\boldsymbol{s}_0 = C$  $($message  $m_0)$  and
  • at $\boldsymbol{s}_1 = 0$  $($message  $m_1)$. 


The symbol error probability of this system is described by the following equation:

$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot \int_{0}^{G} p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm} | \hspace{0.05cm}m_0) \,{\rm d} \eta +{1}/{ 2} \cdot \int_{G}^{\infty} p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm} |\hspace{0.05cm} m_1) \,{\rm d} \eta \hspace{0.05cm}.$$

With the standard deviation  $\sigma_n = 1$,  which is assumed in the following, 

  • the resulting Rayleigh distribution for  $m = m_1$  (blue curve)  is:
$$p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm} \hspace{0.05cm}| m_1) = \eta \cdot {\rm e }^{-\eta^2/2} \hspace{0.05cm}.$$
  • The  (red)  Rice distribution can be approximated in the present case  $($because of  $C\gg \sigma_n)$  by a Gaussian curve:
$$p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm} |\hspace{0.05cm} m_0) = \frac{1}{\sqrt{2\pi}} \cdot {\rm e }^{-(\eta-C)^2/2} \hspace{0.05cm}.$$

The optimal decision boundary  $G_{\rm opt}$  is obtained from the intersection of the red and blue curves.

  • From the two sketches it can be seen that  $G_{\rm opt}$  depends on  $C$. 
  • For the upper graph  $C = 4$,  for the lower graph  $C = 6$.
  • All quantities are normalized and  $\sigma_n = 1$  is always assumed.


Notes:

  • For the complementary Gaussian error integral,  you can use the following approximations:
$${\rm Q }(1.5) \approx 0.0668\hspace{0.05cm}, \hspace{0.5cm}{\rm Q }(2.5) \approx 0.0062\hspace{0.05cm}, \hspace{0.5cm} {\rm Q }(2.65) \approx 0.0040 \hspace{0.05cm}.$$



Questions

1

What is the relationship between the mean symbol energy  $E_{\rm S}$  and the constant  $C$  of the Rice distribution?

$E_{\rm S} = C$,
$E_{\rm S} = C^2$,
$E_{\rm S} = C^2\hspace{-0.1cm}/2$.

2

What is the governing equation for the optimal decision boundary  $G_{\rm opt}$?

$G = C/2$,
$G \, –1/C \cdot {\rm ln} \, (G) = C/2 + 1/(2C) \cdot {\rm ln} \, (2\pi)$,
$G = 1/C \cdot {\rm ln} \, (G)$.

3

Determine the optimal decision threshold for  $C = 4$.

$G_{\rm opt} \ = \ $

4

What is the symbol error probability with  $C = 4$  and  $G = 2.5 \approx G_{\rm opt}$?

$p_{\rm S} \ = \ $

$\ \% $

5

Determine the optimal decision threshold for  $C = 6$.

$G_{\rm opt} \ = \ $

6

What is the symbol error probability with  $C = 6$  and  $G = 3.5\approx G_{\rm opt}$?

$p_{\rm S} \ = \ $

$\ \% $


Solution

(1)  Solution 3 is correct:

  • The energy is equal to the value $\boldsymbol{s}_0 = C$ in the signal space constellation squared, divided by $2$.
  • The factor $1/2$ takes into account that the message $m_1$ does not contribute any energy ($\boldsymbol{s}_1 = 0$).


(2)  Solution 2 is correct here:

  • The optimal decision boundary $G$ lies at the intersection of the two curves shown.
  • The factor $1/2$ considers the equally probable messages $m_0$ and $m_1$. Thus, the following determination equation is obtained:
$${G}/{2} \cdot {\rm exp } \left [ - {G^2 }/{2 }\right ] = \frac{1}{2 \cdot \sqrt{2\pi}} \cdot {\rm exp } \left [ - \frac{G^2 - 2 C \cdot G + C^2}{2 }\right ]$$
$$\Rightarrow \hspace{0.3cm} \sqrt{2\pi} \cdot G = {\rm exp } \left [ C \cdot G - C^2/2 \right ] \hspace{0.3cm}\Rightarrow \hspace{0.3cm} C \cdot G - {\rm ln }\hspace{0.15cm} (\sqrt{2\pi} \cdot G) - C^2/2 = 0$$
$$\Rightarrow \hspace{0.3cm} G - {1}/{C} \cdot {\rm ln }\hspace{0.15cm} ( G) = C/2 + {1}/({2C}) \cdot {\rm ln }\hspace{0.15cm} (\sqrt{2\pi}) = C/2 + {1}/({2C}) \cdot {\rm ln }\hspace{0.15cm} ({2\pi})\hspace{0.05cm}.$$


(3)  With $C = 4$, the governing equation given in (2) is

$$f(G) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} G - {1}/{C} \cdot {\rm ln }\hspace{0.15cm} ( G) - C/2 - {1}/({2C}) \cdot {\rm ln }\hspace{0.15cm} ({2\pi})= G - 0.25 \cdot {\rm ln }\hspace{0.15cm} ( G) - 2 - {\rm ln }\hspace{0.15cm} ({2\pi})/8 \approx G - 0.25 \cdot {\rm ln }\hspace{0.15cm} ( G) - 2.23 = 0 \hspace{0.05cm}.$$
  • This equation can only be solved numerically:
$$G = 2.0\text{:}\hspace{0.15cm}f(G) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.403 \hspace{0.05cm}, \hspace{0.2cm}G = 3.0\text{:}\hspace{0.15cm}f(G) = 0.495 \hspace{0.05cm}, \hspace{0.2cm}G = 2.5\text{:}\hspace{0.15cm}f(G) = 0.041\hspace{0.05cm},$$
$$ G = 2.4\text{:}\hspace{0.15cm}f(G) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.049 \hspace{0.05cm}, \hspace{0.2cm}G = 2.46\text{:}\hspace{0.15cm}f(G) \approx 0 \hspace{0.05cm}.$$
  • Thus, the optimal decider boundary is $G_{\rm opt} \underline {= 2.46 \approx 2.5}$.


(4)  The error probability is composed of two parts:

$$p_{\rm S} = {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot {\rm Pr}({\cal{E}}\hspace{0.05cm}| \hspace{0.05cm} m = m_1)+{1}/{ 2}\cdot {\rm Pr}({\cal{E}}\hspace{0.05cm}| \hspace{0.05cm} m = m_0)\hspace{0.05cm}.$$
  • The first part (falsification from $m_1$ nach $m_0$) results from the crossing of the limit $G$ by the Rayleigh distribution
$${\rm Pr}({\cal{E}} \hspace{0.05cm}| \hspace{0.05cm} m = m_1) = \int_{G}^{\infty} p_{y\hspace{0.05cm}| \hspace{0.05cm}m} (\eta \hspace{0.05cm}| \hspace{0.05cm} m_1) \,{\rm d} \eta = {\rm e }^{-G^2/2}= {\rm e }^{-3.125}\approx 0.044 \hspace{0.05cm}.$$
  • The second part (falsification from $m_0$ to $m_1$) results from the Rice distribution, which is approximated here by the Gaussian distribution:
$${\rm Pr}({\cal{E}}| m = m_0) = \int_{0}^{G} p_{y\hspace{0.05cm}| \hspace{0.05cm}m} (\eta \hspace{0.05cm}| \hspace{0.05cm} m_0) \,{\rm d} \eta = \frac{1}{\sqrt{2\pi}} \cdot \int_{0}^{G} {\rm e }^{-(\eta-C)^2/2} \,{\rm d} \eta \hspace{0.05cm}.$$
  • This part can be given by the complementary Gaussian error integral ${\rm Q}(x)$:
$${\rm Pr}({\cal{E}}\hspace{0.05cm}| \hspace{0.05cm} m = m_0) = {\rm Pr}(y < G-C) = {\rm Pr}(y > C-G) = {\rm Q }(\frac{C-G}{\sigma_n})= {\rm Q }(\frac{4-2.5}{1})= {\rm Q }(1.5) \approx 0.0688 \hspace{0.05cm}. $$
  • This gives a total of:
$$p_{\rm S} = {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot 0.0440 +{1}/{ 2} \cdot 0.0668 \approx \underline{5.54\, \%}\hspace{0.05cm}.$$

Note:   A system simulation has shown that a slightly smaller error probability results if the actual Rice distribution is used instead of the Gaussian approximation. Then with $G = 2.5$:

$$p_{\rm S} = {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot 0.0440 + {1}/{ 2} \cdot 0.0484 \approx \underline{4.62\, \%}\hspace{0.05cm}.$$

Thus, the Gaussian approximation provides an upper bound on the true error probability.


(5)  With  $C = 6$,  the governing equation given in (3) is

$$f(G)= G - {1}/{C} \cdot {\rm ln }\hspace{0.15cm} ( G) - C/2 - \frac{1}{2C} \cdot {\rm ln }\hspace{0.15cm} ({2\pi}) \approx G - {\rm ln }\hspace{0.15cm} ( G)/6 - 3.153 = 0 \hspace{0.05cm},$$
$$G = 3.0\hspace{-0.1cm}:\hspace{0.15cm}f(G) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.336 \hspace{0.05cm}, \hspace{0.2cm}G = 3.50\hspace{-0.1cm}:\hspace{0.15cm}f(G) = 0.138 \hspace{0.05cm},$$
$$ G = 3.3\hspace{-0.1cm}:\hspace{0.15cm}f(G) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.052 \hspace{0.05cm}, \hspace{0.2cm}G = 3.35\hspace{-0.1cm}:\hspace{0.15cm}f(G) \approx 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{G_{\rm opt} \approx 3.35}\hspace{0.05cm}.$$


(6)  Analogous to subtask (4), we obtain with $G = 3.5$:

$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot {\rm e }^{-G^2/2} +{1}/{ 2} \cdot {\rm Q }(C-G)= {1}/{ 2} \cdot {\rm e }^{-6.125} + {1}/{ 2} \cdot {\rm Q }(2.5)= {1}/{ 2} \cdot 2.2 \cdot 10^{-3} + {1}/{ 2} \cdot 6.2 \cdot 10^{-3} \underline{= 0.42 \,\%} \hspace{0.05cm}.$$
  • For  $C = 6$,  the optimal decision boundary ($G_{\rm opt} = 3.35$) results in an error probability that is about a factor of $10$ smaller than with $C = 4$:
$$p_{\rm S} = {1}/{ 2} \cdot {\rm e }^{-5.61} + {1}/{ 2} \cdot {\rm Q }(2.65)= {1}/{ 2} \cdot 3.6 \cdot 10^{-3} +{1}/{ 2} \cdot 4 \cdot 10^{-3}= {0.38 \,\%} \hspace{0.05cm}.$$
  • The actual error probability using the Rice distribution (no Gaussian approximation) gives a slightly smaller value:   $0.33\%$.