Exercise 4.17: Non-Coherent On-Off Keying

From LNTwww

Rayleigh– und Riceverteilung

Die Abbildung zeigt die beiden Dichtefunktionen, die sich bei einer nichtkohärenten Demodulation von On–Off–Keying  (OOK) ergeben. Dabei wird vorausgesetzt, dass die zwei OOK–Signalraumpunkte bei  $\boldsymbol{s}_0 = C$  $($Nachricht  $m_0)$  und bei $\boldsymbol{s}_1 = 0$  $($Nachricht  $m_1)$  liegen.

Die Symbolfehlerwahrscheinlichkeit dieses Systems wird durch die folgende Gleichung beschrieben:

$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot \int_{0}^{G} p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm} | \hspace{0.05cm}m_0) \,{\rm d} \eta +{1}/{ 2} \cdot \int_{G}^{\infty} p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm} |\hspace{0.05cm} m_1) \,{\rm d} \eta \hspace{0.05cm}.$$

Mit der Streuung  $\sigma_n = 1$, die im Folgenden vorausgesetzt wird, lautet die sich für  $m = m_1$  ergebende Rayleighverteilung (blaue Kurve):

$$p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm} \hspace{0.05cm}| m_1) = \eta \cdot {\rm e }^{-\eta^2/2} \hspace{0.05cm}.$$

Die Riceverteilung (rote Kurve) kann man im vorliegenden Fall $($wegen  $C\gg \sigma_n)$  durch eine Gaußkurve annähern:

$$p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm} |\hspace{0.05cm} m_0) = \frac{1}{\sqrt{2\pi}} \cdot {\rm e }^{-(\eta-C)^2/2} \hspace{0.05cm}.$$

Die optimale Entscheidergrenze  $G_{\rm opt}$  ergibt sich aus dem Schnittpunkt von roter und blauer Kurve.

  • Aus den beiden Skizzen erkennt man, dass  $G_{\rm opt}$  von  $C$  abhängt.
  • Für die obere Grafik gilt  $C = 4$, für die untere  $C = 6$.
  • Alle Größen sind normiert und es wird stets  $\sigma_n = 1$  vorausgesetzt.



Hinweise:

$${\rm Q }(1.5) \approx 0.0668\hspace{0.05cm}, \hspace{0.5cm}{\rm Q }(2.5) \approx 0.0062\hspace{0.05cm}, \hspace{0.5cm} {\rm Q }(2.65) \approx 0.0040 \hspace{0.05cm}.$$



Fragebogen

1

Welcher Zusammenhang besteht zwischen der mittleren Symbolenergie  $E_{\rm S}$  und der Konstanten  $C$  der Riceverteilung?

$E_{\rm S} = C$,
$E_{\rm S} = C^2$,
$E_{\rm S} = C^2/2$.

2

Welche Bestimmungsgleichung gilt für die optimale Entscheidergrenze  $G_{\rm opt}$?

$G = C/2$,
$G \, –1/C \cdot {\rm ln} \, (G) = C/2 + 1/(2C) \cdot {\rm ln} \, (2\pi)$,
$G \, –1/C \cdot {\rm ln} \, (G)$.

3

Bestimmen Sie die optimale Entscheidergrenze für  $C = 4$.

$G_{\rm opt} \ = \ $

4

Welche Symbolfehlerwahrscheinlichkeit ergibt sich für  $C = 4$  und  $G = 2.5 \approx G_{\rm opt}$?

$p_{\rm S} \ = \ $

$\ \% $

5

Bestimmen Sie die optimale Entscheiderschwelle für  $C = 6$.

$G_{\rm opt} \ = \ $

6

Welche Symbolfehlerwahrscheinlichkeit ergibt sich mit  $C = 6$  und  $G = 3.5\approx G_{\rm opt}$?

$p_{\rm S} \ = \ $

$\ \% $


Musterlösung

(1)  Richtig istder Lösungsvorschlag 3:

  • Die Energie ist gleich dem Wert $\boldsymbol{s}_0 = C$ in der Signalraumkonstellation zum Quadrat, geteilt durch $2$.
  • Der Faktor $1/2$ berücksichtigt hierbei, dass die Nachricht $m_1$ keinen Energiebeitrag liefert ($\boldsymbol{s}_1 = 0$).


(2)  Richtig ist hier der Lösungsvorschlag 2:

  • Die optimale Entscheidergrenze $G$ liegt beim Schnittpunkt der beiden dargestellten Kurven.
  • Der Faktor $1/2$ berücksichtigt die gleichwahrscheinlichen Nachrichten $m_0$ und $m_1$. Damit erhält man folgende Bestimmungsgleichung:
$${G}/{2} \cdot {\rm exp } \left [ - {G^2 }/{2 }\right ] = \frac{1}{2 \cdot \sqrt{2\pi}} \cdot {\rm exp } \left [ - \frac{G^2 - 2 C \cdot G + C^2}{2 }\right ]$$
$$\Rightarrow \hspace{0.3cm} \sqrt{2\pi} \cdot G = {\rm exp } \left [ C \cdot G - C^2/2 \right ] \hspace{0.3cm}\Rightarrow \hspace{0.3cm} C \cdot G - {\rm ln }\hspace{0.15cm} (\sqrt{2\pi} \cdot G) - C^2/2 = 0$$
$$\Rightarrow \hspace{0.3cm} G - {1}/{C} \cdot {\rm ln }\hspace{0.15cm} ( G) = C/2 + {1}/({2C}) \cdot {\rm ln }\hspace{0.15cm} (\sqrt{2\pi}) = C/2 + {1}/({2C}) \cdot {\rm ln }\hspace{0.15cm} ({2\pi})\hspace{0.05cm}.$$


(3)  Mit $C = 4$ lautet die unter (2) angegebene Bestimmungsgleichung

$$f(G) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} G - {1}/{C} \cdot {\rm ln }\hspace{0.15cm} ( G) - C/2 - {1}/({2C}) \cdot {\rm ln }\hspace{0.15cm} ({2\pi})= G - 0.25 \cdot {\rm ln }\hspace{0.15cm} ( G) - 2 - {\rm ln }\hspace{0.15cm} ({2\pi})/8 \approx G - 0.25 \cdot {\rm ln }\hspace{0.15cm} ( G) - 2.23 = 0 \hspace{0.05cm}.$$
  • Diese Gleichung kann nur numerisch gelöst werden:
$$G = 2.0\text{:}\hspace{0.15cm}f(G) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.403 \hspace{0.05cm}, \hspace{0.2cm}G = 3.0\text{:}\hspace{0.15cm}f(G) = 0.495 \hspace{0.05cm}, \hspace{0.2cm}G = 2.5\text{:}\hspace{0.15cm}f(G) = 0.041\hspace{0.05cm},$$
$$ G = 2.4\text{:}\hspace{0.15cm}f(G) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.049 \hspace{0.05cm}, \hspace{0.2cm}G = 2.46\text{:}\hspace{0.15cm}f(G) \approx 0 \hspace{0.05cm}.$$
  • Die optimale Entscheidergrenze liegt demnach bei $G_{\rm opt} \underline {= 2.46 \approx 2.5}$.


(4)  Die Fehlerwahrscheinlichkeit setzt sich aus zwei Anteilen zusammen:

$$p_{\rm S} = {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot {\rm Pr}({\cal{E}}\hspace{0.05cm}| \hspace{0.05cm} m = m_1)+{1}/{ 2}\cdot {\rm Pr}({\cal{E}}\hspace{0.05cm}| \hspace{0.05cm} m = m_0)\hspace{0.05cm}.$$
  • Der erste Anteil (Verfälschung von $m_1$ nach $m_0$) ergibt sich aus der Überschreitung der Grenze $G$ durch die Rayleighverteilung
$${\rm Pr}({\cal{E}} \hspace{0.05cm}| \hspace{0.05cm} m = m_1) = \int_{G}^{\infty} p_{y\hspace{0.05cm}| \hspace{0.05cm}m} (\eta \hspace{0.05cm}| \hspace{0.05cm} m_1) \,{\rm d} \eta = {\rm e }^{-G^2/2}= {\rm e }^{-3.125}\approx 0.044 \hspace{0.05cm}.$$
  • Der zweite Anteil (Verfälschung von $m_0$ nach $m_1$) ergibt sich aus der Riceverteilung, die hier durch die Gaußverteilung angenähert ist:
$${\rm Pr}({\cal{E}}| m = m_0) = \int_{0}^{G} p_{y\hspace{0.05cm}| \hspace{0.05cm}m} (\eta \hspace{0.05cm}| \hspace{0.05cm} m_0) \,{\rm d} \eta = \frac{1}{\sqrt{2\pi}} \cdot \int_{0}^{G} {\rm e }^{-(\eta-C)^2/2} \,{\rm d} \eta \hspace{0.05cm}.$$
  • Dieser Anteil lässt sich mit dem komplementären Gaußschen Fehlerintegral ${\rm Q}(x)$ angeben:
$${\rm Pr}({\cal{E}}\hspace{0.05cm}| \hspace{0.05cm} m = m_0) = {\rm Pr}(y < G-C) = {\rm Pr}(y > C-G) = {\rm Q }(\frac{C-G}{\sigma_n})= {\rm Q }(\frac{4-2.5}{1})= {\rm Q }(1.5) \approx 0.0688 \hspace{0.05cm}. $$
  • Damit erhält man insgesamt:
$$p_{\rm S} = {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot 0.0440 +{1}/{ 2} \cdot 0.0668 \approx \underline{5.54\, \%}\hspace{0.05cm}.$$

Hinweis:   Eine Systemsimulation hat ergeben, dass sich eine etwas kleinere Fehlerwahrscheinlichkeit ergibt, wenn man anstelle der Gaußnäherung die tatsächliche Riceverteilung ansetzt. Dann gilt mit $G = 2.5$:

$$p_{\rm S} = {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot 0.0440 + {1}/{ 2} \cdot 0.0484 \approx \underline{4.62\, \%}\hspace{0.05cm}.$$

Die Gaußnäherung liefert also eine obere Schranke für die tatsächliche Fehlerwahrscheinlichkeit.


(5)  Mit  $C = 6$  lautet die unter (3) angegebene Bestimmungsgleichung

$$f(G)= G - {1}/{C} \cdot {\rm ln }\hspace{0.15cm} ( G) - C/2 - \frac{1}{2C} \cdot {\rm ln }\hspace{0.15cm} ({2\pi}) \approx G - {\rm ln }\hspace{0.15cm} ( G)/6 - 3.153 = 0 \hspace{0.05cm},$$
$$G = 3.0\hspace{-0.1cm}:\hspace{0.15cm}f(G) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.336 \hspace{0.05cm}, \hspace{0.2cm}G = 3.50\hspace{-0.1cm}:\hspace{0.15cm}f(G) = 0.138 \hspace{0.05cm},$$
$$ G = 3.3\hspace{-0.1cm}:\hspace{0.15cm}f(G) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.052 \hspace{0.05cm}, \hspace{0.2cm}G = 3.35\hspace{-0.1cm}:\hspace{0.15cm}f(G) \approx 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{G_{\rm opt} \approx 3.35}\hspace{0.05cm}.$$


(6)  Analog zur Teilaufgabe (4) erhält man mit $G = 3.5$:

$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot {\rm e }^{-G^2/2} +{1}/{ 2} \cdot {\rm Q }(C-G)= {1}/{ 2} \cdot {\rm e }^{-6.125} + {1}/{ 2} \cdot {\rm Q }(2.5)= {1}/{ 2} \cdot 2.2 \cdot 10^{-3} + {1}/{ 2} \cdot 6.2 \cdot 10^{-3} \underline{= 0.42 \,\%} \hspace{0.05cm}.$$
  • Für  $C = 6$  ergibt sich mit der hierfür optimalen Entscheidergrenze ($G_{\rm opt} = 3.35$) eine etwa um den Faktor $10$ kleinere Fehlerwahrscheinlichkeit als mit $C = 4$:
$$p_{\rm S} = {1}/{ 2} \cdot {\rm e }^{-5.61} + {1}/{ 2} \cdot {\rm Q }(2.65)= {1}/{ 2} \cdot 3.6 \cdot 10^{-3} +{1}/{ 2} \cdot 4 \cdot 10^{-3}= {0.38 \,\%} \hspace{0.05cm}.$$
  • Die tatsächliche Fehlerwahrscheinlichkeit bei Verwendung der Riceverteilung (keine Gaußnäherung) liefert einen etwas kleineren Wert:   $0.33\%$.