Difference between revisions of "Aufgaben:Exercise 4.1: About the Gram-Schmidt Process"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Signale, Basisfunktionen und Vektorräume}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces}}
  
[[File:P_ID1994__Dig_A_4_1.png|right|frame|Vorgabe zum Gram-Schmidt-Verfahren]]
+
[[File:P_ID1994__Dig_A_4_1.png|right|frame|Specification for the Gram-Schmidt process]]
Für die vier durch die Abbildung definierten Signale  $s_1(t), \, \text{...} \, , s_4(t)$  sind durch Anwendung des Gram–Schmidt–Verfahrens die drei sich ergebenden Basisfunktionen  $\varphi_1(t)$,  $\varphi_2(t)$  und  $\varphi_3(t)$  zu ermitteln, so dass für die Signale mit  $i = 1, \, \text{...} \, , 4$  geschrieben werden kann:
+
For the four signals  $s_1(t), \, \text{...} \, , s_4(t)$  defined by the figure, the three resulting basis functions  $\varphi_1(t)$,  $\varphi_2(t)$  and  $\varphi_3(t)$  are to be determined by applying the Gram-Schmidt process, so that for the signals with   $i = 1, \, \text{...} \, , 4$  can be written:
 
:$$s_i(t) = s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) + s_{i3} \cdot \varphi_3(t)\hspace{0.05cm}.$$
 
:$$s_i(t) = s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) + s_{i3} \cdot \varphi_3(t)\hspace{0.05cm}.$$
  
*In der Teilaufgabe '''(1)''' gelte  $A^2 = 1 \ \rm mW$  und  $T = 1 \ \rm µ s$.  
+
*In subtask '''(1)''', let  $A^2 = 1 \ \rm mW$  and  $T = 1 \ \rm µ s$.  
*In den späteren Teilaufgaben sind die Amplitude und die Zeit jeweils normierte Größen:   $A = 1$,  $T = 1$.  
+
*In the later subtasks, the amplitude and the time are normalized quantities, respectively:   $A = 1$,  $T = 1$.  
*Damit sind sowohl die Koeffizienten  $s_{\it ij}$  als auch die Basisfunktionen  $\varphi_{\it j}(t)$  – jeweils mit  $j = 1, 2, 3$  – dimensionslose Größen.
+
*Thus, both the coefficients  $s_{\it ij}$  and the basis functions  $\varphi_{\it j}(t)$  – with  $j = 1, 2, 3$  – are dimensionless quantities.
  
  
Line 15: Line 15:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel   [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume| Signale, Basisfunktionen und Vektorräume]].
+
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
*Bezug genommen wird insbesondere auf die Seiten  [[Digital_Signal_Transmission/Signale,_Basisfunktionen_und_Vektorräume#Orthonormale_Basisfunktionen|Orthonormale Basisfunktionen]]  und  [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Das_Verfahren_nach_Gram-Schmidt|Gram–Schmidt–Verfahren]].  
+
*Reference is made in particular to the sections  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#Orthonormal_basis_functions|"Orthonormal basis functions"]]  and  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process|"Gram-Schmidt process"]].  
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Einheiten besitzen die folgenden Größen mit&nbsp; $A^2 = 1 \, \rm mW$&nbsp; und&nbsp; $T = 1 \, {\rm &micro; s}$?
+
{What are the units of the following quantities with&nbsp; $A^2 = 1 \, \rm mW$&nbsp; and&nbsp; $T = 1 \, {\rm &micro; s}$?
 
|type="[]"}
 
|type="[]"}
- Die Basisfunktionen &nbsp;$\varphi_j(t)$&nbsp; sind dimensionslos.
+
- The basis functions &nbsp;$\varphi_j(t)$&nbsp; are dimensionless.
+ Die Basisfunktionen &nbsp;$\varphi_j(t)$&nbsp; haben die Einheit &nbsp;$\rm \sqrt{\rm s}$.
+
+ The basis functions &nbsp;$\varphi_j(t)$&nbsp; have the unit &nbsp;$\rm \sqrt{\rm s}$.
- Die Koeffizienten &nbsp;$s_{\it ij}$&nbsp; sind dimensionslos.
+
- The coefficients &nbsp;$s_{\it ij}$&nbsp; are dimensionless.
+ Die Koeffizienten &nbsp;$s_{\it ij}$&nbsp; haben die Einheit &nbsp;$\rm \sqrt{\rm Ws}$.
+
+ The coefficients &nbsp;$s_{\it ij}$&nbsp; have the unit &nbsp;$\rm \sqrt{\rm Ws}$.
  
{Führen Sie den ersten Schritt des Gram&ndash;Schmidt&ndash;Verfahrens durch. Wie für die weiteren Aufgaben gelte &nbsp;$A = 1$&nbsp; und &nbsp;$T = 1$.  
+
{Perform the first step of the Gram-Schmidt process. As for the other tasks, let &nbsp;$A = 1$&nbsp; and &nbsp;$T = 1$ hold.  
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm 11} \ = \ $ { 1.414 3% }
 
$s_{\rm 11} \ = \ $ { 1.414 3% }
Line 37: Line 37:
 
$s_{\rm 13} \ = \ $ { 0. }
 
$s_{\rm 13} \ = \ $ { 0. }
  
{Wie lauten die Koeffizienten des Signals&nbsp; $s_2(t)$&nbsp; mit &nbsp;$A = 1$ &nbsp;und&nbsp; $T = 1$?
+
{What are the coefficients of the signal&nbsp; $s_2(t)$&nbsp; with &nbsp;$A = 1$ &nbsp;and&nbsp; $T = 1$?
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm 21} \ = \ $ { 0.707 3% }
 
$s_{\rm 21} \ = \ $ { 0.707 3% }
Line 43: Line 43:
 
$s_{\rm 23} \ = \ $ { 0. }
 
$s_{\rm 23} \ = \ $ { 0. }
  
{Wie lauten die Koeffizienten des Signals&nbsp; $s_3(t)$&nbsp; mit &nbsp;$A = 1$ &nbsp;und&nbsp; $T = 1$?
+
{What are the coefficients of the signal&nbsp; $s_3(t)$&nbsp; with &nbsp;$A = 1$ &nbsp;and&nbsp; $T = 1$?
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm 31} \ = \ $ { -0.72821--0.68579 }
 
$s_{\rm 31} \ = \ $ { -0.72821--0.68579 }
Line 49: Line 49:
 
$s_{\rm 33} \ = \ $ { 0. }
 
$s_{\rm 33} \ = \ $ { 0. }
  
{Wie lauten die Koeffizienten des Signals&nbsp; $s_4(t)$&nbsp; mit &nbsp;$A = 1$ &nbsp;und&nbsp; $T = 1$?
+
{What are the coefficients of the signal&nbsp; $s_4(t)$&nbsp; with &nbsp;$A = 1$ &nbsp;and&nbsp; $T = 1$?
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm 41} \ = \ $ { 0. }
 
$s_{\rm 41} \ = \ $ { 0. }
Line 56: Line 56:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 4</u>:
+
'''(1)'''&nbsp; <u>Solutions 2 and 4</u> are correct:
*Jede orthonormale Basisfunktion soll die Energie 1 aufweisen, das heißt, es muss gelten:
+
*Every orthonormal basis function should have energy 1, that is, it must hold:
 
:$$||\varphi_j(t)||^2 =  \int_{-\infty}^{+\infty}\varphi_j(t)^2\,{\rm d}  t = 1  
 
:$$||\varphi_j(t)||^2 =  \int_{-\infty}^{+\infty}\varphi_j(t)^2\,{\rm d}  t = 1  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*Damit diese Bedingung zu erfüllen ist, muss die Basisfunktion die Einheit $\rm \sqrt{\rm s}$ besitzen. Zu berücksichtigen ist noch die Gleichung
+
*For this condition to be satisfied, the basis function must have unit $\rm \sqrt{\rm s}$. Another equation to be considered is
 
:$$s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t).$$
 
:$$s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t).$$
*Die Signale selbst weisen wie $A$ die Einheit $\rm \sqrt{\rm W}$ auf. Wegen der Einheit $\rm \sqrt{\rm 1/s}$ von $\varphi_{ j}(t)$ ist diese Gleichung nur dann mit der richtigen Dimension zu erfüllen, wenn die Koeffizienten $s_{\it ij}$ mit der Einheit $\rm \sqrt{\rm Ws}$ angegeben werden.  
+
*Like $A$, the signals themselves have the unit $\rm \sqrt{\rm W}$. Because of the unit $\rm \sqrt{\rm 1/s}$ of $\varphi_{ j}(t)$, this equation can be satisfied with the correct dimension only if the coefficients $s_{\it ij}$ are given with the unit $\rm \sqrt{\rm Ws}$.
  
  
  
'''(2)'''&nbsp; Die Energie des Signals $s_1(t)$ ist gleich $E_1 = 2$. Daraus folgt für die Norm, die Basisfunktion $\varphi_1(t)$ und den Koeffizienten $s_{\rm 11}$:
+
'''(2)'''&nbsp; The energy of the signal $s_1(t)$ is equal to $E_1 = 2$. It follows for the norm, the basis function $\varphi_1(t)$ and the coefficient $s_{\rm 11}$:
 
:$$||s_1(t)|| =  \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm}
 
:$$||s_1(t)|| =  \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm}
 
s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} }
 
s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} }
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Die weiteren Koeffizienten sind $\underline {s_{\rm 12} = s_{\rm 13} = 0}$, da die zugehörigen Basisfunktionen bisher noch gar nicht gefunden wurden, während $\varphi_1(t)$ formgleich mit $s_1(t)$ ist.
+
The other coefficients are $\underline {s_{\rm 12} = s_{\rm 13} = 0}$, since the associated basis functions have not been found at all yet, while $\varphi_1(t)$ is equal in form to $s_1(t)$.
  
  
  
'''(3)'''&nbsp; Da nach Berücksichtigung von $s_2(t)$ höchstens zwei Basisfunktionen gefunden sind, gilt mit Sicherheit $s_{\rm 23} \hspace{0.15cm} \underline{= 0}$. Dagegen erhält man für den Koeffizienten
+
'''(3)'''&nbsp; Since at most two basis functions are found after considering $s_2(t)$, $s_{\rm 23} \hspace{0.15cm} \underline{= 0}$ holds with certainty. On the other hand one obtains for the coefficient
 
:$$||s_1(t)|| =  \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm}
 
:$$||s_1(t)|| =  \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm}
 
s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} }
 
s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} }
 
\hspace{0.05cm};$$
 
\hspace{0.05cm};$$
  
für die Hilfsfunktion $\theta_2(t)$:
+
for the auxiliary function $\theta_2(t)$:
 
:$$\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = \left\{ \begin{array}{c} 1 - 0.707 \cdot 0.707 = 0.5\\
 
:$$\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = \left\{ \begin{array}{c} 1 - 0.707 \cdot 0.707 = 0.5\\
 
  0 - 0.707 \cdot (-0.707) = 0.5  \end{array} \right.\quad
 
  0 - 0.707 \cdot (-0.707) = 0.5  \end{array} \right.\quad
Line 89: Line 89:
 
\hspace{0.05cm}; $$
 
\hspace{0.05cm}; $$
  
für die zweite Basisfunktion:
+
for the second basis function:
 
:$$\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||},\hspace{0.2cm}
 
:$$\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||},\hspace{0.2cm}
 
||\theta_2(t)|| = \sqrt{0.5^2 + 0.5^2} = \sqrt{0.5} \approx 0.707$$
 
||\theta_2(t)|| = \sqrt{0.5^2 + 0.5^2} = \sqrt{0.5} \approx 0.707$$
Line 98: Line 98:
 
\hspace{0.05cm}; $$
 
\hspace{0.05cm}; $$
  
und schließlich für den zweiten Koeffizienten
+
and finally for the second coefficient
 
:$$s_{22}  = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 1 \cdot 0.707 + 0 \cdot 0.707 \hspace{0.1cm}\hspace{0.15cm}\underline {  = 0.707}
 
:$$s_{22}  = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 1 \cdot 0.707 + 0 \cdot 0.707 \hspace{0.1cm}\hspace{0.15cm}\underline {  = 0.707}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Die Berechnungen sind in der nachfolgenden Grafik verdeutlicht.
+
The calculations are illustrated in the graph below.
  
[[File:P_ID1995__Dig_A_4_1c.png|center|frame|Gram-Schmidt-Berechnungen]]
+
[[File:P_ID1995__Dig_A_4_1c.png|center|frame|Gram-Schmidt calculations]]
  
'''(4)'''&nbsp; Man erkennt sofort, dass $s_3(t)$ sich als Linearkombination aus $s_1(t)$ und $s_2(t)$ ausdrücken lässt.
+
'''(4)'''&nbsp; It can be seen immediately that $s_3(t)$ can be expressed as a linear combination of $s_1(t)$ and $s_2(t)$.
 
:$$s_{3}(t)  = -s_{1}(t) + s_{2}(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}s_{31} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{11} + s_{21} = -1.414 + 0.707 = \hspace{0.1cm}\hspace{0.15cm}\underline {-0.707}\hspace{0.05cm},$$
 
:$$s_{3}(t)  = -s_{1}(t) + s_{2}(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}s_{31} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{11} + s_{21} = -1.414 + 0.707 = \hspace{0.1cm}\hspace{0.15cm}\underline {-0.707}\hspace{0.05cm},$$
 
:$$s_{32} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{12} + s_{22} = 0 + 0.707 \hspace{0.1cm}\underline {= 0.707}\hspace{0.05cm},$$
 
:$$s_{32} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{12} + s_{22} = 0 + 0.707 \hspace{0.1cm}\underline {= 0.707}\hspace{0.05cm},$$
Line 112: Line 112:
  
  
'''(5)'''&nbsp; Der Bereich $2 &#8804; t &#8804; 3$ wird weder von $\varphi_1(t)$ noch von $\varphi_2(t)$ abgedeckt. Deshalb liefert $s_4(t)$ die neue Basisfunktion $\varphi_3(t)$. Da außerdem $s_4(t)$ nur Anteile im Bereich $2 &#8804; t &#8804; 3$ aufweist und $||s_4(t)|| = 1$ ist, ergibt sich $\varphi_3(t) = s_4(t)$ sowie
+
'''(5)'''&nbsp; The range $2 &#8804; t &#8804; 3$ is not covered by either $\varphi_1(t)$ or $\varphi_2(t)$. Therefore, $s_4(t)$ provides the new basis function $\varphi_3(t)$. Furthermore, since $s_4(t)$ has components only in the range $2 &#8804; t &#8804; 3$ and $||s_4(t)|| = 1$, we obtain $\varphi_3(t) = s_4(t)$ as well as
 
:$$s_{41} \hspace{0.1cm}\hspace{0.15cm}\underline {= 0},  \hspace{0.2cm}s_{42} \hspace{0.1cm}\hspace{0.15cm}\underline {= 0},  \hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 1} \hspace{0.05cm}.  $$
 
:$$s_{41} \hspace{0.1cm}\hspace{0.15cm}\underline {= 0},  \hspace{0.2cm}s_{42} \hspace{0.1cm}\hspace{0.15cm}\underline {= 0},  \hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 1} \hspace{0.05cm}.  $$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 15:50, 13 June 2022

Specification for the Gram-Schmidt process

For the four signals  $s_1(t), \, \text{...} \, , s_4(t)$  defined by the figure, the three resulting basis functions  $\varphi_1(t)$,  $\varphi_2(t)$  and  $\varphi_3(t)$  are to be determined by applying the Gram-Schmidt process, so that for the signals with   $i = 1, \, \text{...} \, , 4$  can be written:

$$s_i(t) = s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) + s_{i3} \cdot \varphi_3(t)\hspace{0.05cm}.$$
  • In subtask (1), let  $A^2 = 1 \ \rm mW$  and  $T = 1 \ \rm µ s$.
  • In the later subtasks, the amplitude and the time are normalized quantities, respectively:   $A = 1$,  $T = 1$.
  • Thus, both the coefficients  $s_{\it ij}$  and the basis functions  $\varphi_{\it j}(t)$  – with  $j = 1, 2, 3$  – are dimensionless quantities.




Notes:


Questions

1

What are the units of the following quantities with  $A^2 = 1 \, \rm mW$  and  $T = 1 \, {\rm µ s}$?

The basis functions  $\varphi_j(t)$  are dimensionless.
The basis functions  $\varphi_j(t)$  have the unit  $\rm \sqrt{\rm s}$.
The coefficients  $s_{\it ij}$  are dimensionless.
The coefficients  $s_{\it ij}$  have the unit  $\rm \sqrt{\rm Ws}$.

2

Perform the first step of the Gram-Schmidt process. As for the other tasks, let  $A = 1$  and  $T = 1$ hold.

$s_{\rm 11} \ = \ $

$s_{\rm 12} \ = \ $

$s_{\rm 13} \ = \ $

3

What are the coefficients of the signal  $s_2(t)$  with  $A = 1$  and  $T = 1$?

$s_{\rm 21} \ = \ $

$s_{\rm 22} \ = \ $

$s_{\rm 23} \ = \ $

4

What are the coefficients of the signal  $s_3(t)$  with  $A = 1$  and  $T = 1$?

$s_{\rm 31} \ = \ $

$s_{\rm 32} \ = \ $

$s_{\rm 33} \ = \ $

5

What are the coefficients of the signal  $s_4(t)$  with  $A = 1$  and  $T = 1$?

$s_{\rm 41} \ = \ $

$s_{\rm 42} \ = \ $

$s_{\rm 43} \ = \ $


Solution

(1)  Solutions 2 and 4 are correct:

  • Every orthonormal basis function should have energy 1, that is, it must hold:
$$||\varphi_j(t)||^2 = \int_{-\infty}^{+\infty}\varphi_j(t)^2\,{\rm d} t = 1 \hspace{0.05cm}.$$
  • For this condition to be satisfied, the basis function must have unit $\rm \sqrt{\rm s}$. Another equation to be considered is
$$s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t).$$
  • Like $A$, the signals themselves have the unit $\rm \sqrt{\rm W}$. Because of the unit $\rm \sqrt{\rm 1/s}$ of $\varphi_{ j}(t)$, this equation can be satisfied with the correct dimension only if the coefficients $s_{\it ij}$ are given with the unit $\rm \sqrt{\rm Ws}$.


(2)  The energy of the signal $s_1(t)$ is equal to $E_1 = 2$. It follows for the norm, the basis function $\varphi_1(t)$ and the coefficient $s_{\rm 11}$:

$$||s_1(t)|| = \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm} s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} } \hspace{0.05cm}.$$

The other coefficients are $\underline {s_{\rm 12} = s_{\rm 13} = 0}$, since the associated basis functions have not been found at all yet, while $\varphi_1(t)$ is equal in form to $s_1(t)$.


(3)  Since at most two basis functions are found after considering $s_2(t)$, $s_{\rm 23} \hspace{0.15cm} \underline{= 0}$ holds with certainty. On the other hand one obtains for the coefficient

$$||s_1(t)|| = \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm} s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} } \hspace{0.05cm};$$

for the auxiliary function $\theta_2(t)$:

$$\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = \left\{ \begin{array}{c} 1 - 0.707 \cdot 0.707 = 0.5\\ 0 - 0.707 \cdot (-0.707) = 0.5 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < 1 \\ 1 \le t < 2 \\ \end{array} \hspace{0.05cm}; $$

for the second basis function:

$$\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||},\hspace{0.2cm} ||\theta_2(t)|| = \sqrt{0.5^2 + 0.5^2} = \sqrt{0.5} \approx 0.707$$
$$\Rightarrow \hspace{0.3cm} \varphi_2(t) = \left\{ \begin{array}{c} 0.5/0.707 = 0.707\\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < 2 \\ 2 \le t < 3 \\ \end{array} \hspace{0.05cm}; $$

and finally for the second coefficient

$$s_{22} = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 1 \cdot 0.707 + 0 \cdot 0.707 \hspace{0.1cm}\hspace{0.15cm}\underline { = 0.707} \hspace{0.05cm}.$$

The calculations are illustrated in the graph below.

Gram-Schmidt calculations

(4)  It can be seen immediately that $s_3(t)$ can be expressed as a linear combination of $s_1(t)$ and $s_2(t)$.

$$s_{3}(t) = -s_{1}(t) + s_{2}(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}s_{31} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{11} + s_{21} = -1.414 + 0.707 = \hspace{0.1cm}\hspace{0.15cm}\underline {-0.707}\hspace{0.05cm},$$
$$s_{32} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{12} + s_{22} = 0 + 0.707 \hspace{0.1cm}\underline {= 0.707}\hspace{0.05cm},$$
$$s_{33} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{13} + s_{23} = 0 + 0 \hspace{0.1cm}\underline {= 0}\hspace{0.05cm}. $$


(5)  The range $2 ≤ t ≤ 3$ is not covered by either $\varphi_1(t)$ or $\varphi_2(t)$. Therefore, $s_4(t)$ provides the new basis function $\varphi_3(t)$. Furthermore, since $s_4(t)$ has components only in the range $2 ≤ t ≤ 3$ and $||s_4(t)|| = 1$, we obtain $\varphi_3(t) = s_4(t)$ as well as

$$s_{41} \hspace{0.1cm}\hspace{0.15cm}\underline {= 0}, \hspace{0.2cm}s_{42} \hspace{0.1cm}\hspace{0.15cm}\underline {= 0}, \hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 1} \hspace{0.05cm}. $$