Difference between revisions of "Aufgaben:Exercise 4.1: Low-Pass and Band-Pass Signals"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID691__Sig_A_4_1.png|250px|right|frame|Vorgegebene Signalverläufe]]
+
[[File:P_ID691__Sig_A_4_1.png|250px|right|frame|Given signal curves]]
  
 
Three signal curves are sketched on the right, the first two having the following curve:
 
Three signal curves are sketched on the right, the first two having the following curve:
Line 85: Line 85:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Die si–förmige Zeitfunktion  $x(t)$  lässt auf ein Rechteckspektrum  $X(f)$  schließen.  
+
'''(1)'''  Die si–shaped time function  $x(t)$  suggests a rectangular spectrum  $X(f)$ .
*Die absolute, zweiseitige Bandbreite  $2 \cdot B_x$  ist gleich dem Kehrwert der ersten Nullstelle. Daraus folgt:
+
*The absolute, two-sided bandwidth  $2 \cdot B_x$  is equal to the reciprocal of the first zero. It follows that:
 
   
 
   
 
:$$B_x = \frac{1}{2 \cdot T_x}  =  \frac{1}{2 \cdot 0.1
 
:$$B_x = \frac{1}{2 \cdot T_x}  =  \frac{1}{2 \cdot 0.1
 
\hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
 
\hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
  
*Da der Signalwert bei  $t = 0$  gleich der Rechteckfläche ist, ergibt sich für die konstante Höhe:
+
*Since the signal value at  $t = 0$  is equal to the rectangular area, the constant height is given by:
 
   
 
   
 
:$$X(f=0) = \frac{x(t=0)}{2 B_x}  =  \frac{10
 
:$$X(f=0) = \frac{x(t=0)}{2 B_x}  =  \frac{10
Line 99: Line 99:
  
  
'''(2)'''  Aus  $T_y = 0.167 \,\text{ms}$  erhält man  $B_y \;\underline{= 3 \,\text{kHz}}$.  
+
'''(2)'''  From  $T_y = 0.167 \,\text{ms}$  we get  $B_y \;\underline{= 3 \,\text{kHz}}$.  
*Zusammen mit  $y(t = 0) = 6\,\text{V}$  führt dies zum gleichen Spektralwert  $Y(f = 0)\; \underline{= 1\, \text{mV/Hz}}$  wie bei der Teilaufgabe  '''(1)'''.
+
*Together with  $y(t = 0) = 6\,\text{V}$  this leads to the same spectral value  $Y(f = 0)\; \underline{= 1\, \text{mV/Hz}}$  as in subtaske  '''(1)'''.
  
  
  
  
[[File:P_ID701__Sig_A_4_1_c_neu.png|right|frame|Rechteckförmiges BP–Spektrum]]
+
[[File:P_ID701__Sig_A_4_1_c_neu.png|right|frame|Rectangular BP spectrum]]
'''(3)'''   Aus  $d(t) = x(t) - y(t)$  folgt wegen der Linearität der Fouriertransformation:   $D(f)  = X(f) - Y(f).$
+
'''(3)'''   From  $d(t) = x(t) - y(t)$  follows because of the linearity of the Fourier transformation:   $D(f)  = X(f) - Y(f).$
  
*Die Differenz der zwei gleich hohen Rechteckfunktionen führt zu einem rechteckförmigen Bandpass–Spektrum zwischen  $3 \,\text{kHz}$  und  $5 \,\text{kHz}$.  
+
*The difference of the two equal square wave functions leads to a rectangular bandpass spectrum between  $3 \,\text{kHz}$  and  $5 \,\text{kHz}$.  
*Die (einseitige) Bandbreite beträgt somit  $B_d \;\underline{= 2 \,\text{kHz}}$. In diesem Frequenzintervall ist  $D(f) = 1 \,\text{mV/Hz}$. Außerhalb, also auch bei  $f = 0$, gilt  $D(f)\;\underline{ = 0}$.
+
*The (one-sided) bandwidth is thus  $B_d \;\underline{= 2 \,\text{kHz}}$. In this frequency interval  $D(f) = 1 \,\text{mV/Hz}$. Outside, i.e. also at  $f = 0$, gilt  $D(f)\;\underline{ = 0}$ applies.
  
  
  
  
'''(4)'''  Nach den fundamentalen Gesetzmäßigkeiten der Fouriertransformation ist das Integral über die Zeitfunktion gleich dem Spektralwert bei  $f = 0$. Daraus folgt:
+
'''(4)'''  According to the fundamental laws of the Fourier transformation, the integral over the time function is equal to the spectral value at  $f = 0$. Daraus folgt:
 
   
 
   
 
:$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x}  =  10^{-3}
 
:$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x}  =  10^{-3}
Line 121: Line 121:
 
:$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$
 
:$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$
 
   
 
   
⇒  Bei jedem Bandpass–Signal sind die Flächen der positiven Signalanteile gleich groß wie die Flächen der negativen Anteile.
+
⇒  For each bandpass signal, the areas of the positive signal components are equal to the areas of the negative components.
  
  
 
+
'''(5)'''  In both cases, the calculation of the signal energy is easier in the frequency domain than in the time domain, because here the integration can be reduced to an area calculation of rectangles:
'''(5)'''  In beiden Fällen ist die Berechnung der Signalenergie im Frequenzbereich einfacher als im Zeitbereich, da hier die Integration auf eine Flächenberechnung von Rechtecken zurückgeführt werden kann:
 
 
   
 
   
 
:$$E_x =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5
 
:$$E_x =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5

Revision as of 17:55, 4 February 2021

Given signal curves

Three signal curves are sketched on the right, the first two having the following curve:

$$x(t) = 10\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot {t}/{T_x}) ,$$
$$y(t) = 6\hspace{0.05cm}{\rm V} \cdot {\rm si}( \pi \cdot {t}/{T_y}) .$$

$T_x = 100 \,{\rm µ}\text{s}$  and  $T_y = 166.67 \,{\rm µ}\text{s}$  indicate the first zero of  $x(t)$  bzw.  $y(t)$ respectively. The signal  $d(t)$  results from the difference of the two upper signals (lower graph):


$$d(t) = x(t)-y(t) .$$

In the subtask  (4)  the integral areas of the impulsive signals  $x(t)$  and  $d(t)$  are asked for. For these holds:

$$F_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}x(t)\hspace{0.1cm}{\rm d}t , \hspace{0.5cm}F_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}d(t)\hspace{0.1cm}{\rm d}t .$$

On the other hand, for the corresponding signal energies with  Parseval's theorem:

$$E_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|x(t)|^2\hspace{0.1cm}{\rm d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|X(f)|^2\hspace{0.1cm}{\rm d}f ,$$
$$E_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|d(t)|^2\hspace{0.1cm}{\rm d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|D(f)|^2\hspace{0.1cm}{\rm d}f .$$





Hints:

  • The Fourier retransform of a rectangular spectrum  $X(f)$  leads to an  $\rm si$–shaped time function $x(t)$:
$$X(f)=\left\{ {X_0 \; \rm f\ddot{u}r\; |\it f| < \rm B, \atop {\rm 0 \;\;\; \rm sonst}}\right. \;\; \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \;\;x(t) = 2 \cdot X_0 \cdot B \cdot {\rm si} ( 2\pi B t) .$$
  • In this task, the function $\rm si(x) = \rm sin(x)/x = \rm sinc(x/π)$ is used.


Questions

1

What is the spectrum  $X(f)$  of the signal  $x(t)$? What are the magnitudes of  $X(f = 0)$  and the physical, one-sided bandwidth  $B_x$  of  $x(t)$?

$X(f=0)\ = \ $

 $\text{mV/Hz}$
$B_x \ = \ $

 $\text{kHz}$

2

What are the corresponding characteristics of the signal  $y(t)$?

$Y(f=0)\ = \ $

 $\text{mV/Hz}$
$B_y \ = \ $

 $\text{kHz}$

3

Calculate the spectrum  $D(f)$  of the difference signal  $d(t) = x(t) - y(t)$. How large are  $D(f = 0)$  and the (one-sided) bandwidth  $B_d$?

$D(f=0)\ = \ $

 $\text{mV/Hz}$
$B_d \ = \ $

 $\text{kHz}$

4

What are the integral areas  $F_x$  and  $F_d$  of the signals  $x(t)$  and  $d(t)$?

$F_x\ = \ $

 $\text{Vs}$
$F_d\ = \ $

 $\text{Vs}$

5

What are the energies (coverted to  $1\ Ω$ ) of these signals?

$E_x \ = \ $

 $\text{V}^2\text{s}$
$E_d \ = \ $

 $\text{V}^2\text{s}$


Solution

(1)  Die si–shaped time function  $x(t)$  suggests a rectangular spectrum  $X(f)$ .

  • The absolute, two-sided bandwidth  $2 \cdot B_x$  is equal to the reciprocal of the first zero. It follows that:
$$B_x = \frac{1}{2 \cdot T_x} = \frac{1}{2 \cdot 0.1 \hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
  • Since the signal value at  $t = 0$  is equal to the rectangular area, the constant height is given by:
$$X(f=0) = \frac{x(t=0)}{2 B_x} = \frac{10 \hspace{0.1cm}{\rm V}}{10 \hspace{0.1cm}{\rm kHz}} \hspace{0.15 cm}\underline{= 1 \hspace{0.1cm}{\rm mV/Hz}}.$$


(2)  From  $T_y = 0.167 \,\text{ms}$  we get  $B_y \;\underline{= 3 \,\text{kHz}}$.

  • Together with  $y(t = 0) = 6\,\text{V}$  this leads to the same spectral value  $Y(f = 0)\; \underline{= 1\, \text{mV/Hz}}$  as in subtaske  (1).



Rectangular BP spectrum

(3)  From  $d(t) = x(t) - y(t)$  follows because of the linearity of the Fourier transformation:   $D(f) = X(f) - Y(f).$

  • The difference of the two equal square wave functions leads to a rectangular bandpass spectrum between  $3 \,\text{kHz}$  and  $5 \,\text{kHz}$.
  • The (one-sided) bandwidth is thus  $B_d \;\underline{= 2 \,\text{kHz}}$. In this frequency interval  $D(f) = 1 \,\text{mV/Hz}$. Outside, i.e. also at  $f = 0$, gilt  $D(f)\;\underline{ = 0}$ applies.



(4)  According to the fundamental laws of the Fourier transformation, the integral over the time function is equal to the spectral value at  $f = 0$. Daraus folgt:

$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x} = 10^{-3} \hspace{0.1cm}{\rm V/Hz}\hspace{0.15 cm}\underline{= 0.001 \hspace{0.1cm}{\rm Vs}},$$
$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$

⇒  For each bandpass signal, the areas of the positive signal components are equal to the areas of the negative components.


(5)  In both cases, the calculation of the signal energy is easier in the frequency domain than in the time domain, because here the integration can be reduced to an area calculation of rectangles:

$$E_x = (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5 \hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 0.01 \hspace{0.1cm}{\rm V^2s}},$$
$$E_d = (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 2 \hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 0.004 \hspace{0.1cm}{\rm V^2s}}.$$