Difference between revisions of "Aufgaben:Exercise 4.1Z: Log Likelihood Ratio at the BEC Model"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Fr…“)
 
 
(30 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder
+
{{quiz-Header|Buchseite=Channel_Coding/Soft-in_Soft-Out_Decoder}}
  
 +
[[File:P_ID2978__KC_Z_4_1.png|right|frame|BEC channel model]]
 +
We consider the so-called&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC| $\text{BEC channel }$]]&nbsp; ("binary erasure channel")&nbsp; with
 +
* the input variable&nbsp; $x &#8712; \{+1, \, -1\}$,
  
 +
* the output variable&nbsp; $y &#8712; \{+1, \, -1, \, {\rm E}\}$,&nbsp; and
  
 +
* the erasure probability&nbsp; $\lambda$.
  
  
 +
Here&nbsp; $y = {\rm E}$&nbsp; ("erasure")&nbsp; means that the initial value&nbsp; $y$&nbsp; could neither be decided as &nbsp;"$+1$"&nbsp; nor as &nbsp;"$-1$".
  
 +
Also known are the input probabilities
 +
:$${\rm Pr}(x = +1) = 3/4\hspace{0.05cm}, \hspace{0.5cm}{\rm Pr}(x = -1) = 1/4\hspace{0.05cm}.$$
  
 +
The log likelihood ratio of the binary random variable&nbsp; $x$&nbsp; is given by bipolar approach as follows:
 +
:$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)}\hspace{0.05cm}.$$
  
}}
+
Correspondingly,&nbsp; for the conditional log likelihood ratio in forward direction for all&nbsp; $y &#8712; \{+1, \, -1, \, {\rm E}\}$:
 +
:$$L(y\hspace{0.05cm}|\hspace{0.05cm}x) =
 +
{\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = -1)} \hspace{0.05cm}. $$
  
[[File:|right|]]
 
  
  
===Fragebogen===
 
  
 +
 +
<u>Hints:</u>
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder| "Soft&ndash;in Soft&ndash;out Decoder"]].
 +
 +
* Reference is made in particular to the sections&nbsp;
 +
:*[[Channel_Coding/Soft-in_Soft-Out_Decoder#Reliability_information_-_Log_Likelihood_Ratio| "Reliability Information &ndash; Log Likelihood Ratio"]],&nbsp;
 +
:*[[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC|"Binary Erasure Channel"]].
 +
 +
 +
 +
 +
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What is the log likelihood ratio of the input variable&nbsp; $x$?
|type="[]"}
+
|type="{}"}
- Falsch
+
$L(x) \ = \ ${ 1.099 3% }
+ Richtig
 
  
 +
{What probability&nbsp; ${\rm Pr}(x = \, -1)$&nbsp; corresponds to&nbsp; $L(x) = \, -2$?
 +
|type="{}"}
 +
${\rm Pr}(x = \, -1) \ = \ ${ 0.881 3% }
  
{Input-Box Frage
+
{Calculate the conditional&nbsp; L&ndash;value&nbsp; $L(y = {\rm E}\hspace{0.05cm} |\hspace{0.05cm} x)$&nbsp; in the forward direction.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x) \ = \ ${ 0. }
 
 
  
 +
{Which statements are true for the other two conditional log likelihood ratios?
 +
|type="[]"}
 +
+ $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x)$&nbsp; is positive and infinite in magnitude.
 +
+ $L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x)$&nbsp; is negative and infinite in magnitude.
 +
- It holds&nbsp; $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x) = L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x) = 0$.
  
 +
{Under what conditions do the results from subtasks&nbsp; '''(3)'''&nbsp; and&nbsp; '''(4)'''&nbsp; hold?
 +
|type="()"}
 +
- For&nbsp; $0 &#8804; \lambda &#8804; 1$.
 +
- For&nbsp; $0 < \lambda &#8804; 1$.
 +
- For&nbsp; $0 &#8804; \lambda < 1$.
 +
+ For&nbsp; $0 < \lambda < 1$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; With the given symbol probabilities &nbsp; ${\rm Pr}(x = +1) = 3/4$ &nbsp; and &nbsp; ${\rm Pr}(x = -1) = 1/4$,&nbsp; we obtain:
'''2.'''
+
:$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)}
'''3.'''
+
={\rm ln} \hspace{0.15cm} \frac{3/4}{1/4}\hspace{0.15cm}\underline{= 1.099}\hspace{0.05cm}.$$
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
'''(2)'''&nbsp; According to the definition
'''7.'''
+
:$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)}$$
{{ML-Fuß}}
+
 
 +
yields the following equation for&nbsp; $L(x) = \, -2$:
 +
:$$\hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{1-{\rm Pr}(x = +1)} \stackrel{!}{=}{\rm e}^{-2} \approx 0.135 \hspace{0.25cm}\Rightarrow \hspace{0.25cm}
 +
1.135 \cdot {\rm Pr}(x = +1)\stackrel{!}{=}0.135\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}
 +
{\rm Pr}(x = +1) = 0.119\hspace{0.05cm},\hspace{0.4cm}{\rm Pr}(x = -1)
 +
\hspace{0.15cm}\underline{= 0.881}\hspace{0.05cm}. $$
 +
 
  
 +
'''(3)'''&nbsp; For the conditional log likelihood ratio &nbsp; $L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x)$ &nbsp; in the forward direction,&nbsp; valid for the BEC model:
 +
:$$L(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm}x) =
 +
{\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y= {\rm E}\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y= {\rm E}\hspace{0.05cm}|\hspace{0.05cm}x = -1)}
 +
= {\rm ln} \hspace{0.15cm} \frac{\lambda}{\lambda}\hspace{0.15cm}\underline{= 0}\hspace{0.05cm}.$$
  
  
[[Category:Aufgaben zu  Kanalcodierung|^4.1 Soft–in Soft–out Decoder
+
'''(4)'''&nbsp; Analogous to the sample solution of subtask&nbsp; '''(3)''',&nbsp; we obtain for&nbsp; $y = &plusmn;1$:
 +
:$$L(y = +1\hspace{0.05cm}|\hspace{0.05cm}x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}
 +
{\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y= +1\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y= +1\hspace{0.05cm}|\hspace{0.05cm}x = -1)}
 +
= {\rm ln} \hspace{0.15cm} \frac{1-\lambda}{0}\hspace{0.15cm}\underline{ \hspace{0.05cm}\Rightarrow \hspace{0.15cm}+\infty }\hspace{0.05cm},$$
 +
:$$L(y = -1\hspace{0.05cm}|\hspace{0.05cm}x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}
 +
{\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y= -1\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y= -1\hspace{0.05cm}|\hspace{0.05cm}x = -1)}
 +
= {\rm ln} \hspace{0.15cm} \frac{0}{1-\lambda}\hspace{0.15cm}\underline{ \hspace{0.05cm}\Rightarrow \hspace{0.15cm}-\infty }\hspace{0.05cm}.  $$
  
 +
*Accordingly,&nbsp; the&nbsp; <u>proposed solutions 1 and 2</u>&nbsp; are correct.
  
  
 +
'''(5)'''&nbsp; Correct is the&nbsp; <u>last proposed solution</u>:
 +
* For&nbsp; $\lambda = 0$&nbsp; $($"ideal channel"$)$ &nbsp; &rArr; &nbsp; $L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x) = \ln {(0/0)}$ &nbsp; &#8658; &nbsp; indefinite result.
  
 +
* For&nbsp; $\lambda = 1$&nbsp; $($complete erasure, &nbsp; $y &equiv; {\rm E})$ &nbsp; &rArr; &nbsp; $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x)$&nbsp; and &nbsp; $L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x)$ &nbsp; are undefined.
 +
{{ML-Fuß}}
  
  
  
^]]
+
[[Category:Channel Coding: Exercises|^4.1 Soft–in Soft–out Decoder^]]

Latest revision as of 17:18, 28 November 2022

BEC channel model

We consider the so-called  $\text{BEC channel }$  ("binary erasure channel")  with

  • the input variable  $x ∈ \{+1, \, -1\}$,
  • the output variable  $y ∈ \{+1, \, -1, \, {\rm E}\}$,  and
  • the erasure probability  $\lambda$.


Here  $y = {\rm E}$  ("erasure")  means that the initial value  $y$  could neither be decided as  "$+1$"  nor as  "$-1$".

Also known are the input probabilities

$${\rm Pr}(x = +1) = 3/4\hspace{0.05cm}, \hspace{0.5cm}{\rm Pr}(x = -1) = 1/4\hspace{0.05cm}.$$

The log likelihood ratio of the binary random variable  $x$  is given by bipolar approach as follows:

$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)}\hspace{0.05cm}.$$

Correspondingly,  for the conditional log likelihood ratio in forward direction for all  $y ∈ \{+1, \, -1, \, {\rm E}\}$:

$$L(y\hspace{0.05cm}|\hspace{0.05cm}x) = {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = -1)} \hspace{0.05cm}. $$



Hints:

  • Reference is made in particular to the sections 



Questions

1

What is the log likelihood ratio of the input variable  $x$?

$L(x) \ = \ $

2

What probability  ${\rm Pr}(x = \, -1)$  corresponds to  $L(x) = \, -2$?

${\rm Pr}(x = \, -1) \ = \ $

3

Calculate the conditional  L–value  $L(y = {\rm E}\hspace{0.05cm} |\hspace{0.05cm} x)$  in the forward direction.

$L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x) \ = \ $

4

Which statements are true for the other two conditional log likelihood ratios?

$L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x)$  is positive and infinite in magnitude.
$L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x)$  is negative and infinite in magnitude.
It holds  $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x) = L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x) = 0$.

5

Under what conditions do the results from subtasks  (3)  and  (4)  hold?

For  $0 ≤ \lambda ≤ 1$.
For  $0 < \lambda ≤ 1$.
For  $0 ≤ \lambda < 1$.
For  $0 < \lambda < 1$.


Solution

(1)  With the given symbol probabilities   ${\rm Pr}(x = +1) = 3/4$   and   ${\rm Pr}(x = -1) = 1/4$,  we obtain:

$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)} ={\rm ln} \hspace{0.15cm} \frac{3/4}{1/4}\hspace{0.15cm}\underline{= 1.099}\hspace{0.05cm}.$$


(2)  According to the definition

$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)}$$

yields the following equation for  $L(x) = \, -2$:

$$\hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{1-{\rm Pr}(x = +1)} \stackrel{!}{=}{\rm e}^{-2} \approx 0.135 \hspace{0.25cm}\Rightarrow \hspace{0.25cm} 1.135 \cdot {\rm Pr}(x = +1)\stackrel{!}{=}0.135\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(x = +1) = 0.119\hspace{0.05cm},\hspace{0.4cm}{\rm Pr}(x = -1) \hspace{0.15cm}\underline{= 0.881}\hspace{0.05cm}. $$


(3)  For the conditional log likelihood ratio   $L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x)$   in the forward direction,  valid for the BEC model:

$$L(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm}x) = {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y= {\rm E}\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y= {\rm E}\hspace{0.05cm}|\hspace{0.05cm}x = -1)} = {\rm ln} \hspace{0.15cm} \frac{\lambda}{\lambda}\hspace{0.15cm}\underline{= 0}\hspace{0.05cm}.$$


(4)  Analogous to the sample solution of subtask  (3),  we obtain for  $y = ±1$:

$$L(y = +1\hspace{0.05cm}|\hspace{0.05cm}x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y= +1\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y= +1\hspace{0.05cm}|\hspace{0.05cm}x = -1)} = {\rm ln} \hspace{0.15cm} \frac{1-\lambda}{0}\hspace{0.15cm}\underline{ \hspace{0.05cm}\Rightarrow \hspace{0.15cm}+\infty }\hspace{0.05cm},$$
$$L(y = -1\hspace{0.05cm}|\hspace{0.05cm}x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y= -1\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y= -1\hspace{0.05cm}|\hspace{0.05cm}x = -1)} = {\rm ln} \hspace{0.15cm} \frac{0}{1-\lambda}\hspace{0.15cm}\underline{ \hspace{0.05cm}\Rightarrow \hspace{0.15cm}-\infty }\hspace{0.05cm}. $$
  • Accordingly,  the  proposed solutions 1 and 2  are correct.


(5)  Correct is the  last proposed solution:

  • For  $\lambda = 0$  $($"ideal channel"$)$   ⇒   $L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x) = \ln {(0/0)}$   ⇒   indefinite result.
  • For  $\lambda = 1$  $($complete erasure,   $y ≡ {\rm E})$   ⇒   $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x)$  and   $L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x)$   are undefined.