Difference between revisions of "Aufgaben:Exercise 4.1Z: Log Likelihood Ratio at the BEC Model"

From LNTwww
Line 2: Line 2:
  
 
[[File:P_ID2978__KC_Z_4_1.png|right|frame|BEC channel model]]
 
[[File:P_ID2978__KC_Z_4_1.png|right|frame|BEC channel model]]
We consider the so-called&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC| "BEC channel model"]]&nbsp; (<i>binary erasure channel</i>) with.
+
We consider the so-called&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC| $\text{BEC channel }$]]&nbsp; ("binary erasure channel")&nbsp; with
 
* the input variable&nbsp; $x &#8712; \{+1, \, -1\}$,
 
* the input variable&nbsp; $x &#8712; \{+1, \, -1\}$,
* the output variable&nbsp; $y &#8712; \{+1, \, -1, \, {\rm E}\}$, and
+
 
 +
* the output variable&nbsp; $y &#8712; \{+1, \, -1, \, {\rm E}\}$,&nbsp; and
 +
 
 
* the erasure probability&nbsp; $\lambda$.
 
* the erasure probability&nbsp; $\lambda$.
  
  
Here&nbsp; $y = {\rm E}$&nbsp; (<i>erasure</i>) means that the initial value&nbsp; $y$&nbsp; could neither be decided as &nbsp;$+1$&nbsp; nor as &nbsp;$-1$&nbsp;.
+
Here&nbsp; $y = {\rm E}$&nbsp; ("erasure")&nbsp; means that the initial value&nbsp; $y$&nbsp; could neither be decided as &nbsp;"$+1$"&nbsp; nor as &nbsp;"$-1$".
  
 
Also known are the input probabilities
 
Also known are the input probabilities
 
:$${\rm Pr}(x = +1) = 3/4\hspace{0.05cm}, \hspace{0.5cm}{\rm Pr}(x = -1) = 1/4\hspace{0.05cm}.$$
 
:$${\rm Pr}(x = +1) = 3/4\hspace{0.05cm}, \hspace{0.5cm}{\rm Pr}(x = -1) = 1/4\hspace{0.05cm}.$$
  
The LLR of the binary random variable&nbsp; $x$&nbsp; is given by bipolar approach as follows:
+
The log likelihood ratio of the binary random variable&nbsp; $x$&nbsp; is given by bipolar approach as follows:
 
:$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)}\hspace{0.05cm}.$$
 
:$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)}\hspace{0.05cm}.$$
  
Correspondingly, for the conditional LLR in the forward direction for all&nbsp; $y &#8712; \{+1, \, -1, \, {\rm E}\}$:
+
Correspondingly,&nbsp; for the conditional log likelihood ratio in forward direction for all&nbsp; $y &#8712; \{+1, \, -1, \, {\rm E}\}$:
 
:$$L(y\hspace{0.05cm}|\hspace{0.05cm}x) =
 
:$$L(y\hspace{0.05cm}|\hspace{0.05cm}x) =
 
{\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = -1)} \hspace{0.05cm}. $$
 
{\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = -1)} \hspace{0.05cm}. $$
Line 24: Line 26:
  
  
 +
<u>Hints:</u>
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder| "Soft&ndash;in Soft&ndash;out Decoder"]].
  
 
+
* Reference is made in particular to the sections&nbsp;  
 
+
:*[[Channel_Coding/Soft-in_Soft-Out_Decoder#Reliability_information_-_Log_Likelihood_Ratio| "Reliability Information &ndash; Log Likelihood Ratio"]],&nbsp;  
Hints::
+
:*[[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC|"Binary Erasure Channel"]].
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder| "Soft&ndash;in Soft&ndash;out Decoder"]].
 
* Reference is made in particular to the section&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder#Reliability_information_-_Log_Likelihood_Ratio| "Reliability Information &ndash; Log Likelihood Ratio"]]&nbsp; and to the section&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC|''Binary Erasure Channel'']].
 
  
  
Line 37: Line 39:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{What is the LLR of the input variable&nbsp; $x$?
+
{What is the log likelihood ratio of the input variable&nbsp; $x$?
 
|type="{}"}
 
|type="{}"}
 
$L(x) \ = \ ${ 1.099 3% }  
 
$L(x) \ = \ ${ 1.099 3% }  
Line 45: Line 47:
 
${\rm Pr}(x = \, -1) \ = \ ${ 0.881 3% }
 
${\rm Pr}(x = \, -1) \ = \ ${ 0.881 3% }
  
{Calculate the conditional&nbsp; $L$&ndash;value&nbsp; $L(y = {\rm E}\hspace{0.05cm} |\hspace{0.05cm} x)$&nbsp; in the forward direction.
+
{Calculate the conditional&nbsp; L&ndash;value&nbsp; $L(y = {\rm E}\hspace{0.05cm} |\hspace{0.05cm} x)$&nbsp; in the forward direction.
 
|type="{}"}
 
|type="{}"}
 
$L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x) \ = \ ${ 0. }
 
$L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x) \ = \ ${ 0. }
  
{Which statements are true for the other two conditional LLR?
+
{Which statements are true for the other two conditional log likelihood ratios?
 
|type="[]"}
 
|type="[]"}
+ $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x)$&nbsp; is positive infinity.
+
+ $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x)$&nbsp; is positive and infinite in magnitude.
+ $L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x)$&nbsp; is negative infinite in magnitude.
+
+ $L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x)$&nbsp; is negative and infinite in magnitude.
 
- It holds&nbsp; $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x) = L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x) = 0$.
 
- It holds&nbsp; $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x) = L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x) = 0$.
  
{Under what conditions do the results from '''(3)''' and '''(4)''' hold?
+
{Under what conditions do the results from subtasks&nbsp; '''(3)'''&nbsp; and&nbsp; '''(4)'''&nbsp; hold?
 
|type="()"}
 
|type="()"}
 
- For&nbsp; $0 &#8804; \lambda &#8804; 1$.
 
- For&nbsp; $0 &#8804; \lambda &#8804; 1$.

Revision as of 16:31, 28 November 2022

BEC channel model

We consider the so-called  $\text{BEC channel }$  ("binary erasure channel")  with

  • the input variable  $x ∈ \{+1, \, -1\}$,
  • the output variable  $y ∈ \{+1, \, -1, \, {\rm E}\}$,  and
  • the erasure probability  $\lambda$.


Here  $y = {\rm E}$  ("erasure")  means that the initial value  $y$  could neither be decided as  "$+1$"  nor as  "$-1$".

Also known are the input probabilities

$${\rm Pr}(x = +1) = 3/4\hspace{0.05cm}, \hspace{0.5cm}{\rm Pr}(x = -1) = 1/4\hspace{0.05cm}.$$

The log likelihood ratio of the binary random variable  $x$  is given by bipolar approach as follows:

$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)}\hspace{0.05cm}.$$

Correspondingly,  for the conditional log likelihood ratio in forward direction for all  $y ∈ \{+1, \, -1, \, {\rm E}\}$:

$$L(y\hspace{0.05cm}|\hspace{0.05cm}x) = {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = -1)} \hspace{0.05cm}. $$



Hints:

  • Reference is made in particular to the sections 



Questions

1

What is the log likelihood ratio of the input variable  $x$?

$L(x) \ = \ $

2

What probability  ${\rm Pr}(x = \, -1)$  corresponds to  $L(x) = \, -2$?

${\rm Pr}(x = \, -1) \ = \ $

3

Calculate the conditional  L–value  $L(y = {\rm E}\hspace{0.05cm} |\hspace{0.05cm} x)$  in the forward direction.

$L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x) \ = \ $

4

Which statements are true for the other two conditional log likelihood ratios?

$L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x)$  is positive and infinite in magnitude.
$L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x)$  is negative and infinite in magnitude.
It holds  $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x) = L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x) = 0$.

5

Under what conditions do the results from subtasks  (3)  and  (4)  hold?

For  $0 ≤ \lambda ≤ 1$.
For  $0 < \lambda ≤ 1$.
For  $0 ≤ \lambda < 1$.
For  $0 < \lambda < 1$.


Solution

(1)  With the given symbol probabilities ${\rm Pr}(x = +1) = 3/4$ and ${\rm Pr}(x = -1) = 1/4$, we obtain:

$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)} ={\rm ln} \hspace{0.15cm} \frac{3/4}{1/4}\hspace{0.15cm}\underline{= 1.099}\hspace{0.05cm}.$$


(2)  According to the definition

$$L(x)={\rm ln} \hspace{0.15cm} \frac{\rm Pr}(x = +1)}{\rm Pr}(x = -1)}$$

yields the following equation of determination for $L(x) = \, -2$:

$$\hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{1-{\rm Pr}(x = +1)} \stackrel{!}{=}{\rm e}^{-2} \approx 0.135 \hspace{0.25cm}\Rightarrow \hspace{0.25cm} 1.135 \cdot {\rm Pr}(x = +1)\stackrel{!}{=}0.135\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(x = +1) = 0.119\hspace{0.05cm},\hspace{0.4cm}{\rm Pr}(x = -1) \hspace{0.15cm}\underline{= 0.881}\hspace{0.05cm}. $$


(3)  For the conditional LLR $L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x)$ in the forward direction, for the given BEC model:

$$L(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm}x) = {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y= {\rm E}\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y= {\rm E}\hspace{0.05cm}|\hspace{0.05cm}x = -1)} = {\rm ln} \hspace{0.15cm} \frac{\lambda}{\lambda}\hspace{0.15cm}\underline{= 0}\hspace{0.05cm}.$$


(4)  Analogous to the sample solution of subtask (3), we obtain for $y = ±1$:

$$L(y = +1\hspace{0.05cm}|\hspace{0.05cm}x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y= +1\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y= +1\hspace{0.05cm}|\hspace{0.05cm}x = -1)} = {\rm ln} \hspace{0.15cm} \frac{1-\lambda}{0}\hspace{0.15cm}\underline{ \hspace{0.05cm}\Rightarrow \hspace{0.15cm}+\infty }\hspace{0.05cm},$$
$$L(y = -1\hspace{0.05cm}|\hspace{0.05cm}x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y= -1\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y= -1\hspace{0.05cm}|\hspace{0.05cm}x = -1)} = {\rm ln} \hspace{0.15cm} \frac{0}{1-\lambda}\hspace{0.15cm}\underline{ \hspace{0.05cm}\Rightarrow \hspace{0.15cm}-\infty }\hspace{0.05cm}. $$

Accordingly, the proposed solutions 1 and 2 are correct.


(5)  Correct is the last proposed solution:

  • For $\lambda = 0$ (ideal channel), $L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x) = \ln {(0/0)}$   ⇒   indefinite result.
  • For $\lambda = 1$ (complete erasure, $y ≡ {\rm E}$) $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x)$ and $L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x)$ are indeterminate.