Difference between revisions of "Aufgaben:Exercise 4.1Z: Other Basis Functions"

From LNTwww
Line 15: Line 15:
 
With  $M$  transmitted signals  $s_i(t)$,  already fewer basis functions  $\varphi_{\it j}(t)$  can suffice, namely  $N$. Thus, in general,  $N ≤ M$.
 
With  $M$  transmitted signals  $s_i(t)$,  already fewer basis functions  $\varphi_{\it j}(t)$  can suffice, namely  $N$. Thus, in general,  $N ≤ M$.
  
Es handelt sich hier um die genau gleichen energiebegrenzten Signale  $s_i(t)$  wie in der  [[Aufgaben:Aufgabe_4.1:_Zum_Gram-Schmidt-Verfahren| Aufgabe 4.1]]:  
+
These are exactly the same energy-limited signals  $s_i(t)$  as in  [[Aufgaben:Aufgabe_4.1:_Zum_Gram-Schmidt-Verfahren|"Exercise 4.1"]]:  
*Der Unterschied ist die unterschiedliche Reihenfolge der Signale  $s_i(t)$.  
+
*The difference is the different order of the signals  $s_i(t)$.  
*Diese sind in dieser Aufgabe so sortiert, dass die Basisfunktionen auch ohne Anwendung des umständlicheren  [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Das_Verfahren_nach_Gram-Schmidt| Gram–Schmidt–Verfahrens]]  gefunden werden können.
+
*In this exercise, these are sorted in such a way that the basis functions can be found without using the more cumbersome  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process|"Gram-Schmidt process"]].   
  
  
Line 24: Line 24:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
+
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
 
   
 
   
* Verwenden Sie für numerische Berechnungen:   $A = 1 \sqrt{\rm W} ,  \hspace{0.2cm} T = 1\,{\rm µ s}  \hspace{0.05cm}.  $
+
*For numerical calculations, use:   $A = 1 \sqrt{\rm W} ,  \hspace{0.2cm} T = 1\,{\rm µ s}  \hspace{0.05cm}.  $
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{In Aufgabe 4.1 hat das Gram&ndash;Schmidt&ndash;Verfahren zu&nbsp; $N = 3$&nbsp; Basisfunktionen geführt. Wieviele Basisfunktionen benötigt man hier?
+
{In Exercise 4.1, the Gram-Schmidt process resulted in&nbsp; $N = 3$&nbsp; basis functions. How many basis functions are needed here?
 
|type="{}"}
 
|type="{}"}
 
$N \ = \ $  { 3 3% }  
 
$N \ = \ $  { 3 3% }  
  
{Geben Sie die 2&ndash;Norm aller Signale an:
+
{Give the 2&ndash;norm of all signals:
 
|type="{}"}
 
|type="{}"}
 
$||s_1(t)|| \ = \ $ { 1 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
 
$||s_1(t)|| \ = \ $ { 1 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
Line 43: Line 43:
 
$||s_4(t)|| \ = \ $ { 1.414 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
 
$||s_4(t)|| \ = \ $ { 1.414 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
  
{Welche Aussagen gelten für die Basisfunktionen&nbsp; $\varphi_1(t)$,&nbsp; $\varphi_2(t)$&nbsp; und&nbsp; $\varphi_3(t)$?
+
{Which statements are true for the basis functions&nbsp; $\varphi_1(t)$,&nbsp; $\varphi_2(t)$&nbsp; and&nbsp; $\varphi_3(t)$?
 
|type="[]"}
 
|type="[]"}
+ Die in Aufgabe 4.1 berechneten Basisfunktionen sind auch hier geeignet.
+
+ The basis functions computed in Exericse 4.1 are also appropriate here.
- Es gibt unendlich viele Möglichkeiten für&nbsp; $\{\varphi_1(t),&nbsp; \varphi_2(t),&nbsp; \varphi_3(t)\}$.
+
- There are infinitely many possibilities for&nbsp; $\{\varphi_1(t),&nbsp; \varphi_2(t),&nbsp; \varphi_3(t)\}$.
- Ein möglicher Satz lautet&nbsp; $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\}$, mit&nbsp; $j = 1, 2, 3$.
+
- A possible theorem is&nbsp; $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\}$, with&nbsp; $j = 1, 2, 3$.
+ Ein möglicher Satz lautet&nbsp; $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, mit&nbsp; $j = 1, 2, 3$.
+
+ A possible theorem is&nbsp; $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, with&nbsp; $j = 1, 2, 3$.
  
{Wie lauten die Koeffizienten des Signals&nbsp; $s_4(t)$, bezogen auf die Basisfunktionen&nbsp; $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, mit&nbsp; $j = 1, 2, 3$?
+
{What are the coefficients of the signal&nbsp; $s_4(t)$, with respect to the basis functions&nbsp; $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, with&nbsp; $j = 1, 2, 3$?
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm 41} \ = \ $ { 1 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
 
$s_{\rm 41} \ = \ $ { 1 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
Line 57: Line 57:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der einzige Unterschied zur Aufgabe 4.1 ist die unterschiedliche Nummerierung der Signale $s_i(t)$.  
+
'''(1)'''&nbsp; The only difference to Exercise 4.1 is the different numbering of the signals $s_i(t)$.  
*Damit ist offensichtlich, dass auch hier $\underline {N = 3}$ gelten muss.
+
*Thus it is obvious that $\underline {N = 3}$ must hold here as well.
  
  
'''(2)'''&nbsp; Die 2&ndash;Norm gibt die Wurzel aus der Signalenergie an und ist vergleichbar mit dem Effektivwert bei leistungsbegrenzten Signalen.  
+
'''(2)'''&nbsp; The 2&ndash;norm gives the root of the signal energy and is comparable to the rms value for power-limited signals.
*Die ersten drei Signale haben alle die 2&ndash;Norm
+
*The first three signals all have the 2&ndash;norm
 
:$$||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = \sqrt{A^2 \cdot T}\hspace{0.1cm}\hspace{0.15cm}\underline {  = 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$
 
:$$||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = \sqrt{A^2 \cdot T}\hspace{0.1cm}\hspace{0.15cm}\underline {  = 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$
  
*Die Norm des letzten Signals ist um den Faktor $\sqrt{2}$ größer:
+
*The norm of the last signal is larger by a factor of $\sqrt{2}$:
 
:$$||s_4(t)|| \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$
 
:$$||s_4(t)|| \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Die <u>erste und die letzte Aussage sind zutreffend</u> im Gegensatz zu den Aussagen 2 und 3:
+
'''(3)'''&nbsp; The <u>first and last statements are true</u> in contrast to statements 2 and 3:
* Es wäre völlig unlogisch, wenn die gefundenen Basisfunktionen bei anderer Sortierung der Signale $s_i(t)$ nicht mehr gelten sollten.
+
* It would be completely illogical if the basis functions found should no longer hold when the signals $s_i(t)$ are sorted differently.
* Das Gram&ndash;Schmidt&ndash;Verfahren liefert nur einen möglichen Basisfunktionssatz $\{\varphi_{\it j}(t)\}$. Bei anderer Sortierung ergibt sich (möglicherweise) ein anderer.  
+
* The Gram&ndash;Schmidt process yields only one possible basis function set $\{\varphi_{\it j}(t)\}$. A different sorting (possibly) yields a different one.
*Die Anzahl der Permutationen von &nbsp;$M = 4$&nbsp; Signalen ist &nbsp;$4! = 24$. Mehr Basisfunktionssätze kann es auf keinen Fall geben &nbsp; &rArr; &nbsp; der Lösungsvorschlag 2 ist falsch.
+
*The number of permutations of &nbsp;$M = 4$&nbsp; signals is &nbsp;$4! = 24$. In any case, there cannot be more basis function sets &nbsp; &rArr; &nbsp; solution 2 is wrong.
* Wahrscheinlich gibt es (wegen $N = 3$) aber nur $3! = 6$ mögliche Basisfunktionssätze. Wie aus der [[Aufgaben:4.1_Gram-Schmidt-Verfahren| Musterlösung]] zur Aufgabe 4.1 ersichtlich ist, werden sich mit der Reihenfolge $s_1(t), s_2(t), s_4(t), s_3(t)$ die gleichen Basisfunktionen ergeben wie mit $s_1(t), s_2(t), s_3(t), s_4(t)$. Dies ist aber nur eine Vermutung der Autoren; wir haben es nicht überprüft.
+
*However, there are probably (because of $N = 3$) only $3! = 6$ possible basis function sets. As can be seen from the sample [[Aufgaben:Eercise_4.1:_About_the_Gram-Schmidt_Method|solution]] to Exercise 4.1, the same basis functions will result with the order $s_1(t), s_2(t), s_4(t), s_3(t)$ as with $s_1(t), s_2(t), s_3(t), s_4(t)$. However, this is only a conjecture of the authors; we have not checked it.
* Die Aussage 3 kann allein schon wegen den unterschiedlichen Einheiten von $s_i(t)$ und $\varphi_{\it j}(t)$ nicht stimmen. Die Signale weisen wie $A$ die Einheit $\sqrt{\rm W}$ auf, die Basisfunktionen die Einheit $\sqrt{\rm 1/s}$.
+
* Statement 3 cannot be true simply because of the different units of $s_i(t)$ and $\varphi_{\it j}(t)$. Like $A$, the signals have the unit $\sqrt{\rm W}$, the basis functions the unit $\sqrt{\rm 1/s}$.
* Richtig ist somit die letzte Lösungsalternative, wobei für $K$ gilt:
+
* Thus, the last solution is correct, where for $K$ holds:
 
:$$K = ||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = 10^{-3}\sqrt{\rm Ws} \hspace{0.05cm}.$$
 
:$$K = ||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = 10^{-3}\sqrt{\rm Ws} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Aus dem Vergleich der Diagramme auf der Angabenseite erkennt man:
+
'''(4)'''&nbsp; From the comparison of the diagrams in the specification section we can see:
 
:$$s_{4}(t)  = s_{1}(t) - s_{2}(t) = K \cdot \varphi_1(t) - K \cdot \varphi_2(t)\hspace{0.05cm}.$$
 
:$$s_{4}(t)  = s_{1}(t) - s_{2}(t) = K \cdot \varphi_1(t) - K \cdot \varphi_2(t)\hspace{0.05cm}.$$
  
*Weiterhin gilt:
+
*Furthermore holds:
 
:$$s_{4}(t)  = s_{41}\cdot \varphi_1(t) + s_{42}\cdot \varphi_2(t) + s_{43}\cdot \varphi_3(t)$$
 
:$$s_{4}(t)  = s_{41}\cdot \varphi_1(t) + s_{42}\cdot \varphi_2(t) + s_{43}\cdot \varphi_3(t)$$
 
:$$\Rightarrow \hspace{0.3cm}s_{41} = K \hspace{0.1cm}\hspace{0.15cm}\underline {= 10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{42} = -K \hspace{0.1cm}\hspace{0.15cm}\underline {= -10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm},
 
:$$\Rightarrow \hspace{0.3cm}s_{41} = K \hspace{0.1cm}\hspace{0.15cm}\underline {= 10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{42} = -K \hspace{0.1cm}\hspace{0.15cm}\underline {= -10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm},

Revision as of 14:01, 14 June 2022

Some energy-limited signals

This exercise pursues exactly the same goal as  "Exercise 4.1":

For  $M = 4$  energy-limited signals  $s_i(t)$  with  $i = 1, \ \text{...} \ , 4$,  the  $N$  required orthonormal basis functions  $\varphi_{\it j}(t)$  are to be found, which must satisfy the following condition:

$$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t = {\rm \delta}_{jk} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} j = k \\ j \ne k \\ \end{array} \hspace{0.05cm}.$$

With  $M$  transmitted signals  $s_i(t)$,  already fewer basis functions  $\varphi_{\it j}(t)$  can suffice, namely  $N$. Thus, in general,  $N ≤ M$.

These are exactly the same energy-limited signals  $s_i(t)$  as in  "Exercise 4.1":

  • The difference is the different order of the signals  $s_i(t)$.
  • In this exercise, these are sorted in such a way that the basis functions can be found without using the more cumbersome  "Gram-Schmidt process"




Notes:

  • For numerical calculations, use:   $A = 1 \sqrt{\rm W} , \hspace{0.2cm} T = 1\,{\rm µ s} \hspace{0.05cm}. $


Questions

1

In Exercise 4.1, the Gram-Schmidt process resulted in  $N = 3$  basis functions. How many basis functions are needed here?

$N \ = \ $

2

Give the 2–norm of all signals:

$||s_1(t)|| \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$||s_2(t)|| \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$||s_3(t)|| \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$||s_4(t)|| \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$

3

Which statements are true for the basis functions  $\varphi_1(t)$,  $\varphi_2(t)$  and  $\varphi_3(t)$?

The basis functions computed in Exericse 4.1 are also appropriate here.
There are infinitely many possibilities for  $\{\varphi_1(t),  \varphi_2(t),  \varphi_3(t)\}$.
A possible theorem is  $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\}$, with  $j = 1, 2, 3$.
A possible theorem is  $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, with  $j = 1, 2, 3$.

4

What are the coefficients of the signal  $s_4(t)$, with respect to the basis functions  $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, with  $j = 1, 2, 3$?

$s_{\rm 41} \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$s_{\rm 42} \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$s_{\rm 43} \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$


Solution

(1)  The only difference to Exercise 4.1 is the different numbering of the signals $s_i(t)$.

  • Thus it is obvious that $\underline {N = 3}$ must hold here as well.


(2)  The 2–norm gives the root of the signal energy and is comparable to the rms value for power-limited signals.

  • The first three signals all have the 2–norm
$$||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = \sqrt{A^2 \cdot T}\hspace{0.1cm}\hspace{0.15cm}\underline { = 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$
  • The norm of the last signal is larger by a factor of $\sqrt{2}$:
$$||s_4(t)|| \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$


(3)  The first and last statements are true in contrast to statements 2 and 3:

  • It would be completely illogical if the basis functions found should no longer hold when the signals $s_i(t)$ are sorted differently.
  • The Gram–Schmidt process yields only one possible basis function set $\{\varphi_{\it j}(t)\}$. A different sorting (possibly) yields a different one.
  • The number of permutations of  $M = 4$  signals is  $4! = 24$. In any case, there cannot be more basis function sets   ⇒   solution 2 is wrong.
  • However, there are probably (because of $N = 3$) only $3! = 6$ possible basis function sets. As can be seen from the sample solution to Exercise 4.1, the same basis functions will result with the order $s_1(t), s_2(t), s_4(t), s_3(t)$ as with $s_1(t), s_2(t), s_3(t), s_4(t)$. However, this is only a conjecture of the authors; we have not checked it.
  • Statement 3 cannot be true simply because of the different units of $s_i(t)$ and $\varphi_{\it j}(t)$. Like $A$, the signals have the unit $\sqrt{\rm W}$, the basis functions the unit $\sqrt{\rm 1/s}$.
  • Thus, the last solution is correct, where for $K$ holds:
$$K = ||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = 10^{-3}\sqrt{\rm Ws} \hspace{0.05cm}.$$


(4)  From the comparison of the diagrams in the specification section we can see:

$$s_{4}(t) = s_{1}(t) - s_{2}(t) = K \cdot \varphi_1(t) - K \cdot \varphi_2(t)\hspace{0.05cm}.$$
  • Furthermore holds:
$$s_{4}(t) = s_{41}\cdot \varphi_1(t) + s_{42}\cdot \varphi_2(t) + s_{43}\cdot \varphi_3(t)$$
$$\Rightarrow \hspace{0.3cm}s_{41} = K \hspace{0.1cm}\hspace{0.15cm}\underline {= 10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{42} = -K \hspace{0.1cm}\hspace{0.15cm}\underline {= -10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 0}\hspace{0.05cm}. $$