Difference between revisions of "Aufgaben:Exercise 4.2: Rectangular Spectra"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID695__Sig_A_4_2_neu.png|250px|right|frame|Rechteckförmige Tiefpass– und Bandpass–Spektren]]
+
[[File:P_ID695__Sig_A_4_2_neu.png|250px|right|frame|Rectangular low–pass and bandpass spectra]]
 
We consider two signals  $u(t)$  and  $w(t)$  with rectangular spectra  $U(f)$  and  $W(f)$ respectively.
 
We consider two signals  $u(t)$  and  $w(t)$  with rectangular spectra  $U(f)$  and  $W(f)$ respectively.
 
*It is obvious that
 
*It is obvious that
Line 66: Line 66:
  
  
[[File:P_ID704__Sig_A_4_2_b_neu.png|250px|right|frame|Multiplikation mit Cosinus]]
+
[[File:P_ID704__Sig_A_4_2_b_neu.png|250px|right|frame|Multiplication with cosine]]
'''(2)'''   Das Bandpass–Spektrum kann mit  $f_{\rm T} = 4\, \text{kHz}$  wie folgt dargestellt werden:
+
'''(2)'''   The bandpass spectrum can be represented with  $f_{\rm T} = 4\, \text{kHz}$  as follows:
 
   
 
   
 
:$$ W(f)  = U(f- f_{\rm T}) + U(f+ f_{\rm T}) =  U(f)\star \left[
 
:$$ W(f)  = U(f- f_{\rm T}) + U(f+ f_{\rm T}) =  U(f)\star \left[
 
\delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].$$
 
\delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].$$
  
Entsprechend dem  [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatz]]  gilt dann für das dazugehörige Zeitsignal:
+
According to the  [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatz]] , the following then applies to the associated time signal:
 
   
 
   
 
:$$w(t) = 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) =  2 u_0
 
:$$w(t) = 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) =  2 u_0
 
  \cdot {\rm si} ( \pi {t}/{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t). $$
 
  \cdot {\rm si} ( \pi {t}/{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t). $$
  
Die Grafik zeigt
+
The graph shows
*oben das Tiefpass–Signal $u(t)$,
+
*above the low–pass signal $u(t)$,
*dann die Schwingung $c(t) = 2 · \cos(2 \pi fTt$ ),
+
*then the oscillation $c(t) = 2 · \cos(2 \pi fTt$ ),
*unten das Bandpass–Signal  $w(t) = u(t) \cdot c(t)$.
+
*below the bandpass signal  $w(t) = u(t) \cdot c(t)$.
  
  
Insbesondere erhält man zum Zeitpunkt  $t = 0$:
+
In particular, at time  $t = 0$ one obtains:
 
   
 
   
 
:$$w(t = 0)  =  2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.$$
 
:$$w(t = 0)  =  2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.$$
  
Der Zeitpunkt  $t=62.5 \,{\rm µ} \text{s}$  entspricht genau einer viertel Periodendauer des Signals  $c(t)$:
+
The time  $t=62.5 \,{\rm µ} \text{s}$  corresponds exactly to a quarter of the period of the signal  $c(t)$:
 
   
 
   
 
:$$ w(t = 62.5 \hspace{0.05cm}{\rm µ s})  =  2 u_0 \cdot  {\rm si} ( \pi \cdot \frac{62.5 \hspace{0.05cm}{\rm µ  s}}
 
:$$ w(t = 62.5 \hspace{0.05cm}{\rm µ s})  =  2 u_0 \cdot  {\rm si} ( \pi \cdot \frac{62.5 \hspace{0.05cm}{\rm µ  s}}
Line 98: Line 98:
  
  
'''(3)'''&nbsp;  Richtig ist der  <u>Lösungsvorschlag 1</u>:
+
'''(3)'''&nbsp;  Proposed <u>solution 1 is correct</u>:
*Vergleicht man die Spektralfunktion&nbsp; $W(f)$&nbsp; dieser Aufgabe mit dem Spektrum&nbsp; $D(f)$&nbsp; in der Musterlösung zu&nbsp;  [[Aufgaben:4.1_TP-_und_BP-Signale|Aufgabe 4.1]], so erkennt man, dass&nbsp; $w(t)$&nbsp; und&nbsp; $d(t)$&nbsp; identische Signale sind.  
+
*If we compare the spectral function&nbsp; $W(f)$&nbsp; of this task with the spectrum&nbsp; $D(f)$&nbsp; in the sample solution to&nbsp;  [[Aufgaben:4.1_TP-_und_BP-Signale|task 4.1]], we see that&nbsp; $w(t)$&nbsp; and&nbsp; $d(t)$&nbsp; are identical signals.
 
*Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit&nbsp; $f_2 = 2 \,\text{kHz}$&nbsp; kann für das hier betrachtete Signal geschrieben werden:
 
*Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit&nbsp; $f_2 = 2 \,\text{kHz}$&nbsp; kann für das hier betrachtete Signal geschrieben werden:
 
   
 
   
Line 112: Line 112:
 
(\alpha + \beta)+ \sin (\alpha - \beta)\big]$$
 
(\alpha + \beta)+ \sin (\alpha - \beta)\big]$$
  
:kann obige Gleichung umgeformt werden:
+
:the above equation can be transformed:
 
   
 
   
 
:$$w(t )  =
 
:$$w(t )  =
Line 119: Line 119:
 
  6\hspace{0.05cm}{\rm V} \cdot \frac{\sin (3\pi f_2 t)}{3\pi f_2 t}.$$
 
  6\hspace{0.05cm}{\rm V} \cdot \frac{\sin (3\pi f_2 t)}{3\pi f_2 t}.$$
  
*Damit ist gezeigt, dass beide Signale tatsächlich identisch sind &nbsp; ⇒  &nbsp; Lösungsvorschlag 1:
+
*This shows that both signals are actually identical &nbsp; ⇒  &nbsp; Proposed solution 1:
 
   
 
   
 
:$$w(t)  =  10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 t)
 
:$$w(t)  =  10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 t)

Revision as of 21:27, 4 February 2021

Rectangular low–pass and bandpass spectra

We consider two signals  $u(t)$  and  $w(t)$  with rectangular spectra  $U(f)$  and  $W(f)$ respectively.

  • It is obvious that
$$u(t) = u_0 \cdot {\rm si} ( \pi \cdot {t}/{T_{ u}})$$
is a low-pass signal whose two parameters  $u_0$  and  $T_u$  are to be determined in subtask  (1) .
  • In contrast, the spectrum  $W(f)$ shows that  $w(t)$  describes a bandpass signal.


This task also refers to the bandpass signal

$$d(t) = 10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 \hspace{0.05cm}t) - 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2\hspace{0.05cm} t)$$

whose spectrum was determined in  task 4.1 . Let  $f_2 = 2 \ \rm kHz.$




Hints:

  • Consider the following trigonometric relationship in the solution:
$$\sin (\alpha) \cdot \cos (\beta) = {1}/{2} \cdot \big[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\big].$$


Questions

1

What are the values of the parameters  $u_0$  and  $T_u$  of the low-pass signal?

$u_0\ = \ $

 $\text{V}$
$T_u\ = \ $

 $\text{ms}$

2

Calculate the bandpass signal  $w(t)$. What are the signal values at  $t = 0$  and  $t = 62.5 \, {\rm µ}\text{s}$?

$w(t=0)\ = \ $

 $\text{V}$
$w(t=62.5 \,{\rm µ} \text{s})\ = \ $

 $\text{V}$

3

Which statements are true regarding the bandpass signals  $d(t)$  and  $w(t)$ ? Justify your result in the time domain.

The signals  $d(t)$  and  $w(t)$  are identical.
$d(t)$  and  $w(t)$  differ by a constant factor.
$d(t)$  und  $w(t)$  have different shapes.


Solution

(1)  The time  $T_u$   ⇒   first zero of the LP signal  $u(t)$  – is equal to the reciprocal of the width of the rectangular spectrum, i.e.   $1/(2\, \text{kHz} ) \hspace{0.15 cm}\underline{= 0.5 \, \text{ms}}$.

  • The pulse amplitude is equal to the rectangular area as shown in the sample solution for  task 4.1 . From this follows  $u_0\hspace{0.15 cm}\underline{= 2 \, \text{V}}$.


Multiplication with cosine

(2)  The bandpass spectrum can be represented with  $f_{\rm T} = 4\, \text{kHz}$  as follows:

$$ W(f) = U(f- f_{\rm T}) + U(f+ f_{\rm T}) = U(f)\star \left[ \delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].$$

According to the  Verschiebungssatz , the following then applies to the associated time signal:

$$w(t) = 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) = 2 u_0 \cdot {\rm si} ( \pi {t}/{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t). $$

The graph shows

  • above the low–pass signal $u(t)$,
  • then the oscillation $c(t) = 2 · \cos(2 \pi fTt$ ),
  • below the bandpass signal  $w(t) = u(t) \cdot c(t)$.


In particular, at time  $t = 0$ one obtains:

$$w(t = 0) = 2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.$$

The time  $t=62.5 \,{\rm µ} \text{s}$  corresponds exactly to a quarter of the period of the signal  $c(t)$:

$$ w(t = 62.5 \hspace{0.05cm}{\rm µ s}) = 2 u_0 \cdot {\rm si} ( \pi \cdot \frac{62.5 \hspace{0.05cm}{\rm µ s}} {500 \hspace{0.05cm}{\rm µ s}}) \cdot {\cos} ( 2 \pi \cdot 4\hspace{0.05cm}{\rm kHz}\cdot 62.5 \hspace{0.05cm}{\rm µ s}) $$
$$ \Rightarrow \hspace{0.3cm}w(t = 4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.$$


(3)  Proposed solution 1 is correct:

  • If we compare the spectral function  $W(f)$  of this task with the spectrum  $D(f)$  in the sample solution to  task 4.1, we see that  $w(t)$  and  $d(t)$  are identical signals.
  • Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit  $f_2 = 2 \,\text{kHz}$  kann für das hier betrachtete Signal geschrieben werden:
$$w(t ) = 4\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi f_2 t) \cdot {\cos} ( 4 \pi f_2 t) = ({4\hspace{0.05cm}{\rm V}})/({\pi f_2 t})\cdot \sin (\pi f_2 t) \cdot \cos ( 4 \pi f_2 t) .$$
  • Wegen der trigonometrischen Beziehung
$$\sin (\alpha) \cdot \cos (\beta) = {1}/{2} \cdot \big[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\big]$$
the above equation can be transformed:
$$w(t ) = \frac{2\hspace{0.05cm}{\rm V}}{\pi f_2 t}\cdot \big [\sin (5\pi f_2 t) + \sin (-3\pi f_2 t)\big ] = 10\hspace{0.05cm}{\rm V} \cdot \frac{\sin (5\pi f_2 t)}{5\pi f_2 t}- 6\hspace{0.05cm}{\rm V} \cdot \frac{\sin (3\pi f_2 t)}{3\pi f_2 t}.$$
  • This shows that both signals are actually identical   ⇒   Proposed solution 1:
$$w(t) = 10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 t) - 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2 t) = d(t).$$