Difference between revisions of "Aufgaben:Exercise 4.2: Triangle Area again"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID226__Sto_A_4_2.png|right|frame|Dreieckiges 2D-Gebiet und die beiden Randwahrscheinlichkeitsdichten]]
+
[[File:P_ID226__Sto_A_4_2.png|right|frame|Triangular 2D area and the two marginal probability densities]]
Wir betrachten die gleiche Zufallsgröße  $(x, \ y)$  wie in der  [[Aufgaben:4.1_Dreieckiges_(x,_y)-Gebiet|Aufgabe 4.1]]:  
+
We consider the same random variable  $(x, \ y)$  as in the  [[Aufgaben:Exercise_4.2:_Triangle_Area_again|Exercise 4.1]]:  
*In einem durch die Eckpunkte  $(0,\ 1)$, $(4,\ 3)$ und $(4,\ 5)$  definierten Gebiet  $D$  sei die 2D–WDF  $f_{xy} (x, y) = 0.25$.  
+
*In a domain defined by vertices  $(0,\ 1)$, $(4,\ 3)$, and $(4,\ 5)$  let the 2D–PDF  $f_{xy} (x, y) = 0.25$.  
*Außerhalb dieses in der Grafik rot markierten Definitionsgebietes  $D$  gibt es keine Werte.
+
*There are no values outside this definition area  $D$  marked in red in the graph.
  
  
Weiterhin sind in der Grafik die beiden Randwahrscheinlichkeitsdichten bezüglich den Größen  $x$  und  $y$  eingezeichnet, die bereits in der Aufgabe 4.1 ermittelt wurden.  
+
Furthermore, the two marginal probability densities with respect to the quantities  $x$  and  $y$  are drawn in the graph, which have already been determined in Exercise 4.1.  
  
Daraus lassen sich mit den Gleichungen des Kapitels  [[Theory_of_Stochastic_Signals/Erwartungswerte_und_Momente|Erwartungswerte und Momente]]  die Kenngrößen der beiden Zufallsgrößen bestimmen:
+
From this, the equations of chapter  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected Values and Moments]]  can be used to determine the characteristics of the two random variables:
 
:$$m_x=8/3 ,\hspace{0.5cm} \sigma_x=\sqrt{8/9},$$
 
:$$m_x=8/3 ,\hspace{0.5cm} \sigma_x=\sqrt{8/9},$$
 
:$$ m_y= 3,\hspace{0.95cm} \sigma_y = \sqrt{\rm 2/3}.$$
 
:$$ m_y= 3,\hspace{0.95cm} \sigma_y = \sqrt{\rm 2/3}.$$
  
Aufgrund der Tatsache, dass das Definitionsgebiet  $D$  durch zwei Gerade  $y_1(x)$  und  $y_2(x)$  begrenzt ist, kann hier das gemeinsame Moment erster Ordnung wie folgt berechnet werden.
+
Due to the fact that the domain of definition  $D$  is bounded by two straight lines  $y_1(x)$  and  $y_2(x)$ , the first order joint moment can be calculated here as follows.
 
:$$m_{xy}={\rm E}\big[x\cdot y\big]=\int_{x_{1}}^{x_{2}}x\cdot \int_{y_{1}(x)}^{y_{2}(x)}y \cdot f_{xy}(x,y) \, \,{\rm d}y\, {\rm d}x.$$
 
:$$m_{xy}={\rm E}\big[x\cdot y\big]=\int_{x_{1}}^{x_{2}}x\cdot \int_{y_{1}(x)}^{y_{2}(x)}y \cdot f_{xy}(x,y) \, \,{\rm d}y\, {\rm d}x.$$
  
Line 25: Line 25:
  
  
''Hinweise:''
+
Hints:  
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]].
+
*The Exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables|Two-Dimensional Random Variables]].
*Bezug genommen wird auch auf das Kapitel  [[Theory_of_Stochastic_Signals/Erwartungswerte_und_Momente|Erwartungswerte und Momente]].
+
*Reference is also made to the chapter  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected Values and Moments]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die Grenzgeraden des inneren Integrals zur&nbsp; $m_{xy}$&ndash;Berechnung?
+
{What are the limit lines of the inner integral for&nbsp; $m_{xy}$&ndash;calculation?
 
|type="()"}
 
|type="()"}
 
- $y_1(x) = x+1, $ &nbsp; &nbsp; $y_2(x) = 2x+1.$
 
- $y_1(x) = x+1, $ &nbsp; &nbsp; $y_2(x) = 2x+1.$
Line 42: Line 42:
  
  
{Berechnen Sie das gemeinsame Moment&nbsp; $m_{xy}$&nbsp; gem&auml;&szlig; dem Doppelintegral auf der Angabenseite. &nbsp;<i>Hinweis</i>: &nbsp;Setzen Sie&nbsp; $x_1 = 0$&nbsp; und&nbsp; $x_2 = 4$.
+
{Calculate the joint moment&nbsp; $m_{xy}$&nbsp; according to the double integral on the statement page. &nbsp;<i>Note</i>: &nbsp;Set&nbsp; $x_1 = 0$&nbsp; and&nbsp; $x_2 = 4$.
 
|type="{}"}
 
|type="{}"}
$m_{xy} \ = \ $ { 8.667 3% }
+
$m_{xy} \ = \ $ { 8.667 3% }
  
  
{Welcher Wert ergibt sich f&uuml;r die Kovarianz&nbsp; $\mu_{xy}$ ?
+
{What is the value of the covariance&nbsp; $\mu_{xy}$ ?
 
|type="{}"}
 
|type="{}"}
 
$\mu_{xy}\ = \ $ { 0.667 3% }
 
$\mu_{xy}\ = \ $ { 0.667 3% }
  
  
{Wie gro&szlig; ist der Korrelationskoeffizient&nbsp; $\rho_{xy}$?
+
{What is the value of the correlation coefficient $\rho_{xy}$?
 
|type="{}"}
 
|type="{}"}
 
$\rho_{xy}\ = \ $ { 0.866 3% }
 
$\rho_{xy}\ = \ $ { 0.866 3% }
  
  
{Wie lautet die Gleichung der Korrelationsgeraden&nbsp; $y = K(x)$&nbsp;? An welcher Stelle&nbsp; $y_0$&nbsp; schneidet die Gerade die&nbsp; $y$-Achse? <br>Zeigen Sie, dass die Korrelationsgerade auch durch den Punkt&nbsp; $(m_x, m_y)$&nbsp; geht.
+
{What is the equation of the correlation line&nbsp; $y = K(x)$&nbsp;? At what point&nbsp; $y_0$&nbsp; does the straight line intersect the&nbsp; $y$ axis? <br>Show that the correlation line also passes through the point&nbsp; $(m_x, m_y)$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$y_0\ = \ $ { 1 3% }
 
$y_0\ = \ $ { 1 3% }
Line 65: Line 65:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>mittlere Vorschlag</u>:  
+
'''(1)'''&nbsp; Correct is the <u>middle proposition</u>:  
*Sowohl&nbsp; $y_1(x)$&nbsp; als auch&nbsp; $y_2(x)$&nbsp; schneiden die&nbsp; $y$-Achse bei&nbsp; $y= 1$.  
+
*Both&nbsp; $y_1(x)$&nbsp; and&nbsp; $y_2(x)$&nbsp; intersect the&nbsp; $y$-axis at&nbsp; $y= 1$.  
*Die untere Begrenzungslinie hat die Steigung&nbsp; $0.5$, die obere die Steigung&nbsp; $1$.
+
*The lower boundary line has slope&nbsp; $0.5$, the upper has slope&nbsp; $1$.
  
  
  
'''(2)'''&nbsp; Entsprechend den Hinweisen erhalten wir:
+
'''(2)'''&nbsp; According to the clues we get:
:$$m_{xy}=\int_{\rm 0}^{\rm 4} x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1} {1}/{4}\cdot y \, \,{\rm d}y\,\, \, {\rm d}x = {1}/{8}\cdot \int_{\rm 0}^{\rm 4} x\cdot \big[( x+ 1)^{\rm 2}- ({ x}/{2}+1)^{\rm 2} \big] \,\, {\rm d}x.$$
+
: $$m_{xy}=\int_{\rm 0}^{\rm 4} x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1} {1}/{4}\cdot y \, \,{\rm d}y\,\, {\rm d}x = {1}/{8}\cdot \int_{\rm 0}^{\rm 4} x\cdot \big[( x+ 1)^{\rm 2}- ({ x}/{2}+1)^{\rm 2} \big] \,\, {\rm d}x. $$
  
*Dies f&uuml;hrt zum Integral bzw. Endergebnis:
+
*This leads to the integral or final result:
 
:$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\frac{3}{4}\cdot x^{3}{\rm +} x^2\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$
 
:$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\frac{3}{4}\cdot x^{3}{\rm +} x^2\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$
 
+
'''(3)'''&nbsp; Since both random variables each have a nonzero mean, it follows f&uuml;r the covariance:
 
+
[[File:P_ID223__Sto_A_4_2_d.png|right|frame|correlation line]]
 
 
'''(3)'''&nbsp; Da beide Zufallsgr&ouml;&szlig;en jeweils einen Mittelwert ungleich Null besitzen, folgt f&uuml;r die Kovarianz:
 
[[File:P_ID223__Sto_A_4_2_d.png|right|frame|Korrelationsgerade]]
 
 
:$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$
 
:$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$
  
  
  
'''(4)'''&nbsp; Mit den angegebenen Streuungen erh&auml;lt man:
+
'''(4)'''&nbsp; With the given rms we obtain:
 
:$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$
 
:$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$
  
 
+
'''(5)'''&nbsp; For the correlation line (KG), in general:
'''(5)'''&nbsp; F&uuml;r die Korrelationsgerade (KG) gilt allgemein:
 
 
:$$ y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$
 
:$$ y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$
  
*Mit den oben berechneten Zahlenwerten erh&auml;lt man
+
*Using the numerical values calculated above, we obtain
:$$y={\rm 3}/{\rm 4}\cdot x +\rm 1.$$
+
:$$y={\rm 3}/{\rm 4}\cdot x +\rm 1.$$
  
Die Korrelationsgerade schneidet die&nbsp; $y$-Achse bei $\underline{y=1}$ und geht auch durch den Punkt&nbsp; $(4, 4)$.&nbsp; Jedes andere Ergebnis w&auml;re auch nicht zu interpretieren, wenn man das Definitionsgebiet betrachtet:  
+
The correlation line intersects the&nbsp; $y$-axis at $\underline{y=1}$ and also passes through the point&nbsp; $(4, 4)$.&nbsp; Any other result would also be impossible to interpret considering the definition area:  
*Setzt man&nbsp; $m_x = 8/3$&nbsp; ein, so erh&auml;lt man&nbsp; $y = m_y = 3$.  
+
*If one sets&nbsp; $m_x = 8/3$&nbsp;, one obtains&nbsp; $y = m_y = 3$.  
*Das heißt: &nbsp; Die berechnete Korrelationsgerade geht tats&auml;chlich durch den Punkt&nbsp; $(m_x, m_y)$, wie es die Theorie besagt.
+
*This means: &nbsp; The calculated correlation line actually passes through the point&nbsp; $(m_x, m_y)$, as the theory says.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 20:18, 17 January 2022

Triangular 2D area and the two marginal probability densities

We consider the same random variable  $(x, \ y)$  as in the  Exercise 4.1:

  • In a domain defined by vertices  $(0,\ 1)$, $(4,\ 3)$, and $(4,\ 5)$  let the 2D–PDF  $f_{xy} (x, y) = 0.25$.
  • There are no values outside this definition area  $D$  marked in red in the graph.


Furthermore, the two marginal probability densities with respect to the quantities  $x$  and  $y$  are drawn in the graph, which have already been determined in Exercise 4.1.

From this, the equations of chapter  Expected Values and Moments  can be used to determine the characteristics of the two random variables:

$$m_x=8/3 ,\hspace{0.5cm} \sigma_x=\sqrt{8/9},$$
$$ m_y= 3,\hspace{0.95cm} \sigma_y = \sqrt{\rm 2/3}.$$

Due to the fact that the domain of definition  $D$  is bounded by two straight lines  $y_1(x)$  and  $y_2(x)$ , the first order joint moment can be calculated here as follows.

$$m_{xy}={\rm E}\big[x\cdot y\big]=\int_{x_{1}}^{x_{2}}x\cdot \int_{y_{1}(x)}^{y_{2}(x)}y \cdot f_{xy}(x,y) \, \,{\rm d}y\, {\rm d}x.$$





Hints:



Questions

1

What are the limit lines of the inner integral for  $m_{xy}$–calculation?

$y_1(x) = x+1, $     $y_2(x) = 2x+1.$
$y_1(x) = x/2+1, $     $y_2(x) = x+1.$
$y_1(x) = x-1, $     $y_2(x) = 2x+1.$

2

Calculate the joint moment  $m_{xy}$  according to the double integral on the statement page.  Note:  Set  $x_1 = 0$  and  $x_2 = 4$.

$m_{xy} \ = \ $

3

What is the value of the covariance  $\mu_{xy}$ ?

$\mu_{xy}\ = \ $

4

What is the value of the correlation coefficient $\rho_{xy}$?

$\rho_{xy}\ = \ $

5

What is the equation of the correlation line  $y = K(x)$ ? At what point  $y_0$  does the straight line intersect the  $y$ axis?
Show that the correlation line also passes through the point  $(m_x, m_y)$ .

$y_0\ = \ $


Solution

(1)  Correct is the middle proposition:

  • Both  $y_1(x)$  and  $y_2(x)$  intersect the  $y$-axis at  $y= 1$.
  • The lower boundary line has slope  $0.5$, the upper has slope  $1$.


(2)  According to the clues we get:

$$m_{xy}=\int_{\rm 0}^{\rm 4} x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1} {1}/{4}\cdot y \, \,{\rm d}y\,\, {\rm d}x = {1}/{8}\cdot \int_{\rm 0}^{\rm 4} x\cdot \big[( x+ 1)^{\rm 2}- ({ x}/{2}+1)^{\rm 2} \big] \,\, {\rm d}x. $$
  • This leads to the integral or final result:
$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\frac{3}{4}\cdot x^{3}{\rm +} x^2\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$

(3)  Since both random variables each have a nonzero mean, it follows für the covariance:

correlation line
$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$


(4)  With the given rms we obtain:

$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$

(5)  For the correlation line (KG), in general:

$$ y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$
  • Using the numerical values calculated above, we obtain
$$y={\rm 3}/{\rm 4}\cdot x +\rm 1.$$

The correlation line intersects the  $y$-axis at $\underline{y=1}$ and also passes through the point  $(4, 4)$.  Any other result would also be impossible to interpret considering the definition area:

  • If one sets  $m_x = 8/3$ , one obtains  $y = m_y = 3$.
  • This means:   The calculated correlation line actually passes through the point  $(m_x, m_y)$, as the theory says.