Difference between revisions of "Aufgaben:Exercise 4.2: UMTS Radio Channel Basics"

From LNTwww
 
(25 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Allgemeine Beschreibung von UMTS
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/General_Description_of_UMTS
  
 
}}
 
}}
  
[[File:P_ID1931__Bei_A_4_2.png|right|frame|Pfadverlust, frequenzselektives und zeitselektives Fading]]
+
[[File:EN_Bei_A_4_2_v2.png|right|frame|Path loss,  frequency/time–selective fading ]]
Auch bei UMTS gibt es etliche negative Effekte, die man bei der Systemplanung berücksichtigen muss:
+
UMTS also has quite a few effects leading to degradation that must be taken into account during system planning:
*$\color{red}{\rm Interferenzen}$ durch andere Nutzer, da alle Nutzer gleichzeitig im gleichen Frequenzband versorgt werden.
+
*${\rm Interference}$:  Since all users are simultaneously served in the same frequency band,  each user is interfered by other users.
*$\color{red}{\rm Pfadverlust}$: Die Empfangsleistung $P_{\rm E}$ eines Funksignals nimmt mit der Entfernung $d$ um den Faktor $d^{– \gamma}$ ab.
 
*$\color{red}{\rm Mehrwegeempfang}$: Signal erreicht den mobilen Empfänger nicht nur über den direkten Pfad, sondern auf mehreren Wegen unterschiedlich gedämpft und verschieden verzögert.
 
*$\color{red}{\rm Dopplereffekt}$: Bewegen sich der Sender und/oder der Empfänger, so kann es zu Frequenzverschiebungen der Frequenz kommen abhängig von Geschwindigkeit und Richtung:
 
  
– Welcher Winkel?
+
*${\rm Path\:loss}$:  The received power  $P_{\rm E}$  of a radio signal decreases with distance   $d$   by a factor  $d^{- \gamma}$.
+
 
– Aufeinander zu?
+
*${\rm Multipath\:propagation}$:  The signal reaches the mobile receiver not only through the direct path,  but through several paths – differently attenuated and differently delayed.
 +
 
 +
*${\rm Doppler\:effect}$:  If transmitter and/or receiver move,  frequency shifts can occur depending on speed and the direction  $($Which angle?  Towards each other? Away from each other?$)$. 
 +
 
 +
 
 +
In the book  "[[Mobile Communications]]"  these effects have already been discussed in detail. The diagrams convey only a few pieces of information regarding
 +
*<u>Path loss:</u>&nbsp; Path loss indicates the decrease in the received power with distance&nbsp; $d$&nbsp; from the transmitter.&nbsp; Above the so-called&nbsp; "break point"&nbsp; applies approximately to the received power:
 +
::$$\frac{P(d)}{P(d_0)} = \alpha_0 \cdot \left ( {d}/{d_0}\right )^{-4}.$$
 +
:According to the upper graph&nbsp; $\alpha_{0} = 10^{-5}$&nbsp; $($correspondingly&nbsp; $50 \ \rm dB)$&nbsp; and&nbsp; $d_{0} = 100 \ \rm m$.
 +
 
 +
*<u>Frequency-selective fading:</u>&nbsp; The power transfer function&nbsp; $|H_{\rm K}(f)|^{2}$&nbsp; at a given time according to the middle graph illustrates frequency-selective fading.&nbsp; The blue-dashed horizontal line,&nbsp; on the other hand,&nbsp; indicates non-frequency-selective fading.
 +
::Such frequency-selective fading occurs when the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; is much smaller than the signal bandwidth&nbsp; $B_{\rm S}$.&nbsp; Here,&nbsp; with the&nbsp; "delay spread"&nbsp; $T_{\rm V}$ &nbsp; &rArr; &nbsp; difference between the maximum and minimum delay times:
 +
::$$B_{\rm K}\approx \frac{1}{T_{\rm V}}= \frac{1}{\tau_{\rm max}- \tau_{\rm min}}.$$
 +
 
 +
*<u>Time-selective fading:</u>&nbsp; The bottom graph shows the power transfer function&nbsp; $|H_{\rm K}(t)|^{2}$&nbsp; for a fixed frequency&nbsp; $f_{0}$.&nbsp; The sketch is to be understood schematically,&nbsp; because for the time-selective fading considered here exactly the same course was chosen as in the middle diagram for the frequency-selective fading&nbsp; $($pure convenience of the author$)$.
 +
::Here a so-called&nbsp; "Doppler spread"&nbsp; $B_{\rm D}$&nbsp; arises,&nbsp; defined as the difference between the maximum and the minimum Doppler frequency.&nbsp; The inverse&nbsp; $T_{\rm D} = 1/B_{\rm D}$&nbsp; is called&nbsp; "coherence time"&nbsp; or also&nbsp; "correlation duration".&nbsp; In UMTS,&nbsp; time-selective fading occurs whenever&nbsp; $T_{\rm D} \ll T_{\rm C}$&nbsp; $($chip duration$)$.
  
– Voneinander weg?
 
  
Im Buch „Mobile Kommunikation” wurden diese Effekte bereits im Detail behandelt. Die Diagramme vermitteln nur einige wenige Informationen bezüglich
 
*Pfadverlust (obere Grafik),
 
*frequenzselektives Fading (Mitte),
 
*zeitselektives Fading (untere Grafik).
 
  
 +
<u>Hints:</u>
  
Der Pfadverlust gibt die Verminderung der Empfangsleistung mit der Entfernung $d$ vom Sender an. Oberhalb des sog. ''Break Points'' gilt für die Empfangsleistung näherungsweise:
+
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/General_Description_of_UMTS|"General Description of UMTS"]].
:$$\frac{P(d)}{P(d_0)} = \alpha_0 \cdot \left ( {d}/{d_0}\right )^{-4}.$$
+
Entsprechend der oberen Grafik gilt $\alpha_{0} = 10^{–5}$ (entsprechend $50 \ \rm dB$) und $d_{0} = 100 \ \rm m$.
+
*Reference is made in particular to the sections &nbsp; [[Examples_of_Communication_Systems/General_Description_of_UMTS#Properties_of_the_UMTS_radio_channel|"Properties of the UMTS radio channel"]] &nbsp; and &nbsp; [[Examples_of_Communication_Systems/General_Description_of_UMTS#Frequency.E2.80.93selective_and_time.E2.80.93selective_fading|"Frequency-selective and time-selective fading"]].
  
Die Leistungsübertragungsfunktion $|H_{\rm K}(f)|^{2}$ zu einem gegebenen Zeitpunkt gemäß der mittleren Grafik verdeutlicht frequenzselektives Fading. Die blau–gestrichelt eingezeichnete Horizontale kennzeichnet nichtfrequenzselektives Fading. Frequenzselektives Fading entsteht, wenn die Kohärenzbandbreite $B_{\rm K}$ sehr viel kleiner als die Signalbandbreite $B_{\rm S}$ ist. Dabei gilt mit der Mehrwegeverbreiterung (englisch: ''Delay Spread'') $T_{\rm V}  \Rightarrow$  Differenz zwischen der maximalen und der minimalen Verzögerungszeit:
+
*For UMTS,&nbsp; the bandwidth:&nbsp; $B_{\rm S} = 5 \ \rm MHz$&nbsp; and the chip duration:&nbsp; $T_{\rm C} \approx 0.26 \ \rm &micro; s$.
:$$B_{\rm K}\approx \frac{1}{T_{V}}= \frac{1}{\tau_{\rm max}- \tau_{\rm min}}.$$
+
Die untere Grafik zeigt schematisch die Leistungsübertragungsfunktion $H_{\rm K}(t)^{2}$ für eine feste Frequenz $f_{0}$. Schematisch deshalb, weil für das hier betrachtete zeitselektive Fading genau der gleiche Verlauf gewählt wurde wie in der mittleren Grafik für das frequenzselektive Fading (reine Bequemlichkeit der Autoren).
 
Hier entsteht eine so genannte Dopplerverbreiterung $B_{\rm D}$, definiert als Differenz zwischen der maximalen und der minimalen Dopplerfrequenz. Der Kehrwert $T_{\rm D} = 1/B_{\rm D}$ wird als Kohärenzzeit oder auch als Korrelationsdauer bezeichnet. Bei UMTS tritt immer dann zeitselektives Fading auf, wenn $T_{\rm D} << T_{\rm C}$ (Chipdauer) ist.
 
  
  
''Hinweis:''
 
  
Die Aufgabe gehört zum Themengebiet von [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_UMTS|Allgemeine Beschreibung von UMTS]]. Die Bandbreite beträgt bei UMTS $B_{\rm S} = 5 \ \rm MHz$ und die Chipdauer $T_{\rm C} \approx 0.26 \  \rm \mu s$.
+
===Questions===
===Fragebogen===
 
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
 
  
{Input-Box Frage
+
{Starting from the top graph on the information page,&nbsp; calculate the path loss&nbsp; $($in&nbsp; $\rm dB)$&nbsp; for&nbsp; $d = \rm 5 \ km$.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
${\rm path\ loss} \ = \ $ { 118 3% } $\ \rm dB $.
  
 +
{What statements are true regarding frequency-selective fading?
 +
|type="[]"}
 +
+ This is caused by multipath reception.
 +
- It is caused by movement of transmitter and/or receiver.
 +
+ Different frequencies are attenuated differently.
 +
+ An echo at a distance&nbsp; $1\ \rm &micro; s$&nbsp; results in frequency-selective fading.
  
 +
{What statements are true regarding time-selective fading?
 +
|type="[]"}
 +
- This arises due to multipath reception.
 +
+ It results from movement of transmitter and/or receiver.
 +
- Different frequencies are attenuated differently.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; According to the sketch,&nbsp; the breakpoint is at&nbsp; $d_{0} = 100 \ \rm m$.
'''(2)'''&nbsp;
+
*For&nbsp; $d ≤ d_{0}$,&nbsp; the path loss is equal to&nbsp; $\alpha_{0} \cdot (d/d_{0})^{-2}$.&nbsp; For $d = d_{0} = 100 \ \rm m$&nbsp; holds:
'''(3)'''&nbsp;
+
:$${\rm path\ loss} = \alpha_0 = 10^{-5}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}{50\,{\rm dB}}.$$
'''(4)'''&nbsp;
+
 
'''(5)'''&nbsp;
+
*Above&nbsp; $d_{0}$,&nbsp; the path loss is equal to&nbsp; $\alpha_{0} \cdot (d/d_{0})^{-4}$. &nbsp; Thus,&nbsp; at&nbsp; $5 \ \rm km$&nbsp; distance,&nbsp; one obtains:
'''(6)'''&nbsp;
+
:$${\rm path\ loss} = 10^{-5}\cdot 50^{-4} = 1.6 \cdot 10^{-12}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\underline{118\,{\rm dB}}.$$
'''(7)'''&nbsp;
+
 
 +
 
 +
'''(2)'''&nbsp; Correct are the&nbsp; <u>statements 1, 3, and 4</u>:
 +
*Frequency-selective fading is due to multipath reception.&nbsp; This means:
 +
 
 +
*Different frequency components are delayed and attenuated differently by the channel.
 +
 
 +
*This results in attenuation and phase distortion.
 +
 +
*Because&nbsp; $\tau_{\rm max} = 1 \ \rm &micro; s$&nbsp; $($simplifying&nbsp; $\tau_{\rm min} = 0$&nbsp; is set$)$&nbsp; further results in
 +
:$$B_{\rm K} = \frac{1}{\tau_{\rm max}- \tau_{\rm min}} = 1\,{\rm MHz}\ \ll \ B_{\rm S} \hspace{0.15cm}\underline {= 5\,{\rm MHz}}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct is&nbsp; <u>statement 2</u>.
 +
*Statements 1 and 3,&nbsp; on the other hand,&nbsp; are valid for frequency-selective fading &ndash; see subtask&nbsp; '''(2)'''.
 +
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 68: Line 93:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^4.1 Allgemeine Beschreibung von UMTS
+
[[Category:Examples of Communication Systems: Exercises|^4.1 General Description of UMTS
 
^]]
 
^]]

Latest revision as of 17:26, 13 February 2023

Path loss,  frequency/time–selective fading

UMTS also has quite a few effects leading to degradation that must be taken into account during system planning:

  • ${\rm Interference}$:  Since all users are simultaneously served in the same frequency band,  each user is interfered by other users.
  • ${\rm Path\:loss}$:  The received power  $P_{\rm E}$  of a radio signal decreases with distance   $d$   by a factor  $d^{- \gamma}$.
  • ${\rm Multipath\:propagation}$:  The signal reaches the mobile receiver not only through the direct path,  but through several paths – differently attenuated and differently delayed.
  • ${\rm Doppler\:effect}$:  If transmitter and/or receiver move,  frequency shifts can occur depending on speed and the direction  $($Which angle?  Towards each other? Away from each other?$)$.


In the book  "Mobile Communications"  these effects have already been discussed in detail. The diagrams convey only a few pieces of information regarding

  • Path loss:  Path loss indicates the decrease in the received power with distance  $d$  from the transmitter.  Above the so-called  "break point"  applies approximately to the received power:
$$\frac{P(d)}{P(d_0)} = \alpha_0 \cdot \left ( {d}/{d_0}\right )^{-4}.$$
According to the upper graph  $\alpha_{0} = 10^{-5}$  $($correspondingly  $50 \ \rm dB)$  and  $d_{0} = 100 \ \rm m$.
  • Frequency-selective fading:  The power transfer function  $|H_{\rm K}(f)|^{2}$  at a given time according to the middle graph illustrates frequency-selective fading.  The blue-dashed horizontal line,  on the other hand,  indicates non-frequency-selective fading.
Such frequency-selective fading occurs when the coherence bandwidth  $B_{\rm K}$  is much smaller than the signal bandwidth  $B_{\rm S}$.  Here,  with the  "delay spread"  $T_{\rm V}$   ⇒   difference between the maximum and minimum delay times:
$$B_{\rm K}\approx \frac{1}{T_{\rm V}}= \frac{1}{\tau_{\rm max}- \tau_{\rm min}}.$$
  • Time-selective fading:  The bottom graph shows the power transfer function  $|H_{\rm K}(t)|^{2}$  for a fixed frequency  $f_{0}$.  The sketch is to be understood schematically,  because for the time-selective fading considered here exactly the same course was chosen as in the middle diagram for the frequency-selective fading  $($pure convenience of the author$)$.
Here a so-called  "Doppler spread"  $B_{\rm D}$  arises,  defined as the difference between the maximum and the minimum Doppler frequency.  The inverse  $T_{\rm D} = 1/B_{\rm D}$  is called  "coherence time"  or also  "correlation duration".  In UMTS,  time-selective fading occurs whenever  $T_{\rm D} \ll T_{\rm C}$  $($chip duration$)$.


Hints:

  • For UMTS,  the bandwidth:  $B_{\rm S} = 5 \ \rm MHz$  and the chip duration:  $T_{\rm C} \approx 0.26 \ \rm µ s$.



Questions

1

Starting from the top graph on the information page,  calculate the path loss  $($in  $\rm dB)$  for  $d = \rm 5 \ km$.

${\rm path\ loss} \ = \ $

$\ \rm dB $.

2

What statements are true regarding frequency-selective fading?

This is caused by multipath reception.
It is caused by movement of transmitter and/or receiver.
Different frequencies are attenuated differently.
An echo at a distance  $1\ \rm µ s$  results in frequency-selective fading.

3

What statements are true regarding time-selective fading?

This arises due to multipath reception.
It results from movement of transmitter and/or receiver.
Different frequencies are attenuated differently.


Solution

(1)  According to the sketch,  the breakpoint is at  $d_{0} = 100 \ \rm m$.

  • For  $d ≤ d_{0}$,  the path loss is equal to  $\alpha_{0} \cdot (d/d_{0})^{-2}$.  For $d = d_{0} = 100 \ \rm m$  holds:
$${\rm path\ loss} = \alpha_0 = 10^{-5}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}{50\,{\rm dB}}.$$
  • Above  $d_{0}$,  the path loss is equal to  $\alpha_{0} \cdot (d/d_{0})^{-4}$.   Thus,  at  $5 \ \rm km$  distance,  one obtains:
$${\rm path\ loss} = 10^{-5}\cdot 50^{-4} = 1.6 \cdot 10^{-12}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\underline{118\,{\rm dB}}.$$


(2)  Correct are the  statements 1, 3, and 4:

  • Frequency-selective fading is due to multipath reception.  This means:
  • Different frequency components are delayed and attenuated differently by the channel.
  • This results in attenuation and phase distortion.
  • Because  $\tau_{\rm max} = 1 \ \rm µ s$  $($simplifying  $\tau_{\rm min} = 0$  is set$)$  further results in
$$B_{\rm K} = \frac{1}{\tau_{\rm max}- \tau_{\rm min}} = 1\,{\rm MHz}\ \ll \ B_{\rm S} \hspace{0.15cm}\underline {= 5\,{\rm MHz}}.$$


(3)  Correct is  statement 2.

  • Statements 1 and 3,  on the other hand,  are valid for frequency-selective fading – see subtask  (2).