Difference between revisions of "Aufgaben:Exercise 4.2Z: Correlation between "x" and "e to the power of x""

From LNTwww
 
(28 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Zweidimensionale Zufallsgrößen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables
 
}}
 
}}
  
[[File:P_ID252__Sto_Z_4_2.png|right|]]
+
[[File:EN_Sto_Z_4_2.png|right|frame|Given input PDF  $f_x(x)$  and characteristic curve  $y = {\rm e}^x$]]
:Die Zufallsgröße $x$ sei gleichverteilt zwischen -1 und +1. Damit ist der Mittelwert $m_x = 0$ und die Varianz $\sigma_x^2 = 1/3$.
+
Let the random variable  $x$  be uniformly distributed between  $-1$  and  $+1$.  Thus,
 +
*the mean  $m_x = 0$,  and
 +
*the variance  $\sigma_x^2 = 1/3$.
  
:Durch eine nichtlineare Kennlinie wird die Zufallsgröße $y = g(x) = e^x$ gebildet. Zwischen den beiden Zufallsgrößen $x$ und $y$ besteht also ein fester, deterministischer Zusammenhang und die Zufallsgröße $y$ kann nur Werte zwischen $1/e$ und $e$ annehmen.
 
  
:Für die Wahrscheinlichkeitsdichtefunktion erhält man für diesen Bereich nach dem Prinzip „Transformation von Zufallsgrößen”
+
By the nonlinear characteristic  $y = g(x) = {\rm e}^x$  the random quantity   $y $  is formed.  Thus,  there is a fixed deterministic relationship between the two random variables  $x$  and  $y$.  The random variable  $y$  can only take values between  $1/{\rm e}$  and  ${\rm e}$.
:$$f_y(y) = \frac{\rm 1}{\rm 2\it y}. $$
 
  
:Berücksichtigen Sie, dass im betrachteten Bereich von $-1 ≤ x ≤ +1$ die Exponentialfunktion wie folgt angenähert werden kann:
+
For the probability density function,  one obtains for this range according to the principle  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|"Transformation of Random Variables"]]:
:$$y=\rm e^{\it x}\approx \rm 1+ \frac{ x}{\rm 1!} + \frac{{\it x}^{\rm 2}}{\rm 2!}+ \frac{{\it x}^{\rm 3}}{\rm 3!}+ \frac{{\it x}^{\rm 4}}{\rm 4!}.$$
+
:$$f_y(y) = {\rm 1}/({\rm 2\it y}). $$
  
:<b>Hinweis</b>: Die Aufgabe bezieht sich auf das Kapitel 3.3 und das Kapitel 4.1 des Theorieteils.
 
  
  
===Fragebogen===
+
 
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables|Two-Dimensional Random Variables]].
 +
*Reference is also made to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected Values and Moments]].
 +
*Consider that in the range&nbsp; $-1 ≤ x ≤ +1$&nbsp; the exponential function can be approximated as follows:
 +
:$$y={\rm e}^{x}\approx 1+ \frac{ x}{1!} + \frac{{ x}^{\rm 2}}{\rm 2!}+ \frac{{x}^{\rm 3}}{\rm 3!}+ \frac{{x}^{\rm 4}}{\rm 4!}.$$
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie gro&szlig; ist der Mittelwert der Zufallsgr&ouml;&szlig;e <i>y</i>?
+
{What is the mean value&nbsp; $m_y$&nbsp; of the random variable&nbsp; $y$?
 
|type="{}"}
 
|type="{}"}
$m_y$ = { 1.175 3% }
+
$m_y \ = \ $ { 1.175 3% }
  
  
{Berechnen Sie die Streuung der Zufallsgr&ouml;&szlig;e <i>y</i>.
+
{Calculate the standard deviation value&nbsp; $\sigma_y$&nbsp; of the random variable&nbsp; $y$.
 
|type="{}"}
 
|type="{}"}
$\sigma_y$ = { 0.658 3% }
+
$\sigma_y \ = \ $ { 0.658 3% }
  
  
{Welche der folgenden Aussagen gelten hinsichtlich der 2D-WDF <i>f<sub>xy</sub></i>(<i>x</i>, <i>y</i>)?
+
{Which of the following statements are true regarding 2D&ndash;PDF&nbsp; $f_{xy}(x, y)$?
 
|type="[]"}
 
|type="[]"}
+ Au&szlig;erhalb der Kurve <i>y</i> = e<sup><i>x</i></sup> ist <i>f<sub>xy</sub></i> (<i>x</i>, <i>y</i>) = 0.
+
+ Outside the curve&nbsp; $y = {\rm e}^x$:&nbsp; &rArr; &nbsp; $f_{xy}(x, y)= 0$.
- F&uuml;r alle Werte (<i>x</i>, e<sup><i>x</i></sup>) ist die WDF konstant.
+
- For all two-dimensional values&nbsp; $(x, {\rm e}^x)$&nbsp; the PDF&nbsp; $f_{xy}(x, y)$&nbsp; is constant.
+ Die WDF beschreibt eine Diracwand entlang der Kurve <i>y</i> = e<sup><i>x</i></sup>.
+
+ The PDF describes a&nbsp; "Dirac wall"&nbsp; along the curve&nbsp; $y = {\rm e}^x$.
+ Die Dirachöhe nimmt von links unten nach rechts oben ab.
+
+ The height of the Dirac wall decreases from the lower left to the upper right.
  
  
{Berechnen Sie das gemeinsame Moment der Zufallsgrößen <i>x</i> und <i>y</i>, also den Erwartungswert des Produkts <i>x</i> &middot; <i>y</i>.
+
{Calculate the joint moment&nbsp; $m_{xy}$&nbsp; of the random variables&nbsp; $x$&nbsp; and&nbsp; $y$,&nbsp; that is,&nbsp; the expected value of the product&nbsp; $x \cdot y$.
 
|type="{}"}
 
|type="{}"}
$m_\text{xy}$ = { 0.367 3% }
+
$m_{xy}\ = \ $ { 0.367 3% }
  
  
{Berechnen Sie den Korrelationskoeffizienten zwischen den Zufallsgr&ouml;&szlig;en <i>x</i> und <i>y</i>. Interpretieren Sie das Ergebnis.
+
{Calculate the correlation coefficient&nbsp; $\rho_{xy}$&nbsp; between the random variables&nbsp; $x$&nbsp; and&nbsp; $y$.&nbsp; Interpret the result.
 
|type="{}"}
 
|type="{}"}
$\rho_\text{xy}$ = { 0.967 3% }
+
$\rho_{xy}\ = \ $ { 0.967 3% }
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Der Mittelwert <i>m<sub>y</sub></I> kann in bekannter Weise aus der WDF <i>f<sub>y</sub></I>(<i>y</i>) ermittelt werden. Eine zweite Berechnungsm&ouml;glichkeit basiert direkt auf den Rechenregeln f&uuml;r Erwartungswerte:
+
'''(1)'''&nbsp; The mean value&nbsp; $m_y$&nbsp; can be calculated in a known way from the PDF&nbsp; $f_y(y)$.  
:$$m_y=\rm E[\it y] = \int_{-\infty}^{+\infty}g(x) \cdot f_x(x)\,\, {\rm d}x = \rm\frac{1}{2}\cdot\int_{-1}^{1}\rm e^{\it x}\,\,{\rm d}x=\rm \frac{1}{2}\cdot(e-e^{-1}) \hspace{0.15cm}\underline{= 1.175}.$$
+
 
 +
*A second calculation possibility is based directly on the calculation rules for expected values:
 +
:$$m_y={\rm E}\big[ y\big] = \int_{-\infty}^{+\infty}g(x) \cdot f_x(x)\,\, {\rm d}x = {1}/{2}\cdot\int_{-1}^{1}{\rm e}^{ x}\,\,{\rm d}x=\rm {1}/{2}\cdot(e-e^{-1}) \hspace{0.15cm}\underline{= 1.175}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; For the second moment&nbsp; (second order moment)&nbsp; of the random variable&nbsp; $y$&nbsp; holds:
 +
:$$m_{2 y} = {\rm E}\big[ y^{\rm 2}\big] = {\rm E}[{\rm e}^{ 2 x}]= {1}/{2}\cdot\int_{-1}^{+1}{\rm e}^{2 x} \,\,{\rm d}x = {1}/{4}\cdot({\rm e}^{2}-{\rm e}^{-2}) = 1.813.$$
 +
 
 +
*From this we obtain by Steiner's theorem:
 +
:$$\sigma_y^{\rm 2} = m_{ 2 y}- m_{ y}^2 = {1}/{4}\cdot({\rm e}^{2}-{\rm e}^{-2})-{1}/{4}\cdot( {\rm e}^{2}-2+{\rm e}^{-2})={1}/{2}\cdot(1-{\rm e}^{-2})=0.432 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\sigma_y \hspace{0.15cm}\underline{= 0.658}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct are&nbsp; <u>the proposed solutions 1, 3 and 4</u>:
 +
*Outside the curve&nbsp; $y = {\rm e}^x$&nbsp; the PDF is of course zero.  
 +
*Since the volume under the 2D&ndash;PDF is equal to&nbsp; $1$,&nbsp; the PDF values for the infinitely narrow region are infinite&nbsp; $y = {\rm e}^x$.
 +
*This means that the PDF describes a curved Dirac wall.  
 +
*Due to the decay of the PDF $f_y(y)$&nbsp; with increasing&nbsp; $y$,&nbsp; the height of this Dirac wall decreases continuously from&nbsp; $(-1, 1/{\rm e})$&nbsp; to&nbsp; $(+1, {\rm e})$&nbsp; .
  
:<b>2.</b>&nbsp;&nbsp; F&uuml;r den quadratischen Mittelwert der Zufallsgr&ouml;&szlig;e <I>y</I> gilt:
 
:$$m_{\rm 2 \it y} = \rm E[\it y^{\rm 2}] =  \rm E[\rm e^{\rm 2\it x}]=    \frac{1}{2}\cdot\int_{-1}^{+1}\rm e^{\rm 2\it x}\it \,\,{\rm d}x = \rm\frac{1}{4}\cdot( e^{2}-e^{-2}) = 1.813.$$
 
  
:Daraus erh&auml;lt man mit dem Satz von Steiner:
 
:$$\sigma_y^{\rm 2} = m_{\rm 2 \it y}- m_{\it y}^2 = \frac{1}{4}\cdot(\rm e^{2}-e^{-2})-\frac{1}{4}\cdot( e^{2}-2+e^{-2})=\rm \frac{1}{2}\cdot(1-e^{-2})=0.432 \\ \Rightarrow  \hspace{0.3cm}\sigma_y \hspace{0.15cm}\underline{= 0.658}.$$
 
  
:<b>3.</b>&nbsp;&nbsp;Au&szlig;erhalb der Kurve <i>y</i> = e<sup><i>x</i></sup> ist die WDF nat&uuml;rlich 0. Da das Volumen unter der 2D-WDF gleich 1 sein muss, sind die WDF-Werte f&uuml;r den unendlich schmalen Bereich <i>y</i> = e<sup><i>x</i></sup> unendlich gro&szlig;. Das hei&szlig;t: Die WDF beschreibt eine gekr&uuml;mmte Diracwand. Aufgrund des Abfalls der WDF <i>f<sub>y</sub></i>(<i>y</i>) mit steigenden <i>y</i> nimmt die H&ouml;he dieser Diracwand von (&ndash;1, 1/e) bis zu (+1, e) kontinuierlich ab &nbsp;&nbsp;&#8658;&nbsp;&nbsp; Richtig sind <u>die Lösungsvorschläge 1, 3 und 4</u>.
+
 +
'''(4)'''&nbsp; For the joint moment holds:
 +
:$$m_{xy} = {\rm E}\big[ x\cdot y \big] = {\rm E}\big[ x\cdot {\rm e}^{x} \big].$$
  
:<b>4.</b>&nbsp;&nbsp;F&uuml;r das gemeinsame Moment gilt:
+
*With the series expansion given,&nbsp; the approximation follows:
:$$m_{xy} = \rm E[\it x\cdot y] = \rm E[\it x\cdot \rm e^{\it x}].$$
+
:$$m_{xy} \approx {\rm E}\big[x\big] + {\rm E}\big[x^{\rm 2}\big] + \frac{1}{2} \cdot {\rm E}\big[ x^{\rm 3}\big] + \frac{1}{6}  \cdot {\rm E}\big[ x^{\rm 4}\big]+ \frac{1}{24}  \cdot {\rm E}\big[ x^{\rm 5}\big].$$
  
:Mit der angegebenen Reihenentwicklung folgt daraus die Näherung:
+
*Because of the symmetry of the random variable&nbsp; $x$&nbsp; holds for all odd values of&nbsp; $k$: &nbsp; $\rm E\big[\it x^{k}\rm \big] =\rm 0.$&nbsp; Furthermore:
:$$m_{xy} \approx \rm E[\it x] + \rm E[\it x^{\rm 2}] + \rm \frac{1}{2} \cdot E[\it x^{\rm 3}] + \rm \frac{1}{6} \cdot E[\it x^{\rm 4}]+ \rm\frac{1}{24} \cdot E[\it x^{\rm 5}].$$
+
:$${\rm E}\big[ x^{\rm 2}\big] = \sigma_{x}^{\rm 2}= \frac{1}{3}, \hspace{0.5cm}
 +
{\rm E}\big[ x^{\rm 4}\big] = \frac{1}{2}\int_{-1}^{+1} x^{\rm 4} \,\,{\rm d}x = \rm\frac{1}{5}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}{\it m_{xy}} = \rm\frac{1}{3} + \frac{1}{6}\cdot\frac{1}{5} = \frac{11}{30}\hspace{0.15cm}\underline{\approx 0.367}.$$
  
:Aufgrund der Symmetrie der Zufallsgr&ouml;&szlig;e <i>x</i> gilt f&uuml;r alle ungeradzahligen Werte von <i>k</i>:
 
:$$\rm E[\it x^{k}] =\rm 0.$$
 
  
:Weiterhin gilt:
 
:$$\rm E[\it x^{\rm 2}] = \sigma_{x}^{\rm 2}= \rm\frac{1}{3}, \hspace{0.5cm}
 
\rm E[\it x^{\rm 4}] = \rm\frac{1}{2}\int_{-1}^{+1}\it x^{\rm 4} \it \,\,{\rm d}x = \rm\frac{1}{5}.$$
 
:$$\Rightarrow \hspace{0.3cm}m_{xy} = \rm\frac{1}{3} + \frac{1}{6}\cdot\frac{1}{5} = \frac{11}{30}\hspace{0.15cm}\underline{\approx 0.367}.$$
 
  
:<b>e)</b>&nbsp;&nbsp;Wegen <i>m<sub>x</sub></i> = 0 gilt <i>&mu;<sub>xy</sub></i> = <i>m<sub>xy</sub></i>. Somit ergibt sich für den Korrelationskoeffizienten:
+
'''(5)'''&nbsp; Because of&nbsp; $m_x = 0$&nbsp; holds&nbsp; $\mu_{xy} = m_{xy}$.&nbsp; Thus,&nbsp; for the correlation coefficient:
 
:$$\it \rho_{xy} = \frac{\mu_{xy}}{\sigma_x \cdot \sigma_y}=\rm\frac{0.367}{0.577 \cdot 0.658}\hspace{0.15cm}\underline{ \approx 0.967}.$$
 
:$$\it \rho_{xy} = \frac{\mu_{xy}}{\sigma_x \cdot \sigma_y}=\rm\frac{0.367}{0.577 \cdot 0.658}\hspace{0.15cm}\underline{ \approx 0.967}.$$
  
:Zwischen <i>x</i> und <i>y</i> besteht zwar ein eindeutiger deterministischer Zusammenhang. Da aber hierin auch viele nichtlineare Bindungen enthalten sind, ist der Korrelationskoeffizient <i>&rho;<sub>xy</sub></i> &ne; 1.
+
*Between&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; there is indeed a definite deterministic relation.  
 +
*But since there are also some nonlinear bindings in this,&nbsp; the correlation coefficient&nbsp; $ \rho_{xy} \ne 1$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 86: Line 104:
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.1 Zweidimensionale Zufallsgrößen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.1 Two-Dimensional Random Variables^]]

Latest revision as of 14:19, 18 January 2023

Given input PDF  $f_x(x)$  and characteristic curve  $y = {\rm e}^x$

Let the random variable  $x$  be uniformly distributed between  $-1$  and  $+1$.  Thus,

  • the mean  $m_x = 0$,  and
  • the variance  $\sigma_x^2 = 1/3$.


By the nonlinear characteristic  $y = g(x) = {\rm e}^x$  the random quantity  $y $  is formed.  Thus,  there is a fixed deterministic relationship between the two random variables  $x$  and  $y$.  The random variable  $y$  can only take values between  $1/{\rm e}$  and  ${\rm e}$.

For the probability density function,  one obtains for this range according to the principle  "Transformation of Random Variables":

$$f_y(y) = {\rm 1}/({\rm 2\it y}). $$



Hints:

$$y={\rm e}^{x}\approx 1+ \frac{ x}{1!} + \frac{{ x}^{\rm 2}}{\rm 2!}+ \frac{{x}^{\rm 3}}{\rm 3!}+ \frac{{x}^{\rm 4}}{\rm 4!}.$$


Questions

1

What is the mean value  $m_y$  of the random variable  $y$?

$m_y \ = \ $

2

Calculate the standard deviation value  $\sigma_y$  of the random variable  $y$.

$\sigma_y \ = \ $

3

Which of the following statements are true regarding 2D–PDF  $f_{xy}(x, y)$?

Outside the curve  $y = {\rm e}^x$:  ⇒   $f_{xy}(x, y)= 0$.
For all two-dimensional values  $(x, {\rm e}^x)$  the PDF  $f_{xy}(x, y)$  is constant.
The PDF describes a  "Dirac wall"  along the curve  $y = {\rm e}^x$.
The height of the Dirac wall decreases from the lower left to the upper right.

4

Calculate the joint moment  $m_{xy}$  of the random variables  $x$  and  $y$,  that is,  the expected value of the product  $x \cdot y$.

$m_{xy}\ = \ $

5

Calculate the correlation coefficient  $\rho_{xy}$  between the random variables  $x$  and  $y$.  Interpret the result.

$\rho_{xy}\ = \ $


Solution

(1)  The mean value  $m_y$  can be calculated in a known way from the PDF  $f_y(y)$.

  • A second calculation possibility is based directly on the calculation rules for expected values:
$$m_y={\rm E}\big[ y\big] = \int_{-\infty}^{+\infty}g(x) \cdot f_x(x)\,\, {\rm d}x = {1}/{2}\cdot\int_{-1}^{1}{\rm e}^{ x}\,\,{\rm d}x=\rm {1}/{2}\cdot(e-e^{-1}) \hspace{0.15cm}\underline{= 1.175}.$$


(2)  For the second moment  (second order moment)  of the random variable  $y$  holds:

$$m_{2 y} = {\rm E}\big[ y^{\rm 2}\big] = {\rm E}[{\rm e}^{ 2 x}]= {1}/{2}\cdot\int_{-1}^{+1}{\rm e}^{2 x} \,\,{\rm d}x = {1}/{4}\cdot({\rm e}^{2}-{\rm e}^{-2}) = 1.813.$$
  • From this we obtain by Steiner's theorem:
$$\sigma_y^{\rm 2} = m_{ 2 y}- m_{ y}^2 = {1}/{4}\cdot({\rm e}^{2}-{\rm e}^{-2})-{1}/{4}\cdot( {\rm e}^{2}-2+{\rm e}^{-2})={1}/{2}\cdot(1-{\rm e}^{-2})=0.432 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\sigma_y \hspace{0.15cm}\underline{= 0.658}.$$


(3)  Correct are  the proposed solutions 1, 3 and 4:

  • Outside the curve  $y = {\rm e}^x$  the PDF is of course zero.
  • Since the volume under the 2D–PDF is equal to  $1$,  the PDF values for the infinitely narrow region are infinite  $y = {\rm e}^x$.
  • This means that the PDF describes a curved Dirac wall.
  • Due to the decay of the PDF $f_y(y)$  with increasing  $y$,  the height of this Dirac wall decreases continuously from  $(-1, 1/{\rm e})$  to  $(+1, {\rm e})$  .



(4)  For the joint moment holds:

$$m_{xy} = {\rm E}\big[ x\cdot y \big] = {\rm E}\big[ x\cdot {\rm e}^{x} \big].$$
  • With the series expansion given,  the approximation follows:
$$m_{xy} \approx {\rm E}\big[x\big] + {\rm E}\big[x^{\rm 2}\big] + \frac{1}{2} \cdot {\rm E}\big[ x^{\rm 3}\big] + \frac{1}{6} \cdot {\rm E}\big[ x^{\rm 4}\big]+ \frac{1}{24} \cdot {\rm E}\big[ x^{\rm 5}\big].$$
  • Because of the symmetry of the random variable  $x$  holds for all odd values of  $k$:   $\rm E\big[\it x^{k}\rm \big] =\rm 0.$  Furthermore:
$${\rm E}\big[ x^{\rm 2}\big] = \sigma_{x}^{\rm 2}= \frac{1}{3}, \hspace{0.5cm} {\rm E}\big[ x^{\rm 4}\big] = \frac{1}{2}\int_{-1}^{+1} x^{\rm 4} \,\,{\rm d}x = \rm\frac{1}{5}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\it m_{xy}} = \rm\frac{1}{3} + \frac{1}{6}\cdot\frac{1}{5} = \frac{11}{30}\hspace{0.15cm}\underline{\approx 0.367}.$$


(5)  Because of  $m_x = 0$  holds  $\mu_{xy} = m_{xy}$.  Thus,  for the correlation coefficient:

$$\it \rho_{xy} = \frac{\mu_{xy}}{\sigma_x \cdot \sigma_y}=\rm\frac{0.367}{0.577 \cdot 0.658}\hspace{0.15cm}\underline{ \approx 0.967}.$$
  • Between  $x$  and  $y$  there is indeed a definite deterministic relation.
  • But since there are also some nonlinear bindings in this,  the correlation coefficient  $ \rho_{xy} \ne 1$.