Difference between revisions of "Aufgaben:Exercise 4.2Z: Mixed Random Variables"

From LNTwww
m (Text replacement - "[[Stochastische_Signaltheorie/" to "[[Theory_of_Stochastic_Signals/")
Line 6: Line 6:
 
Man spricht von einer „gemischten Zufallsgröße”, wenn die Zufallsgröße neben einem kontinuierlichen Anteil auch noch diskrete Anteile beinhaltet.
 
Man spricht von einer „gemischten Zufallsgröße”, wenn die Zufallsgröße neben einem kontinuierlichen Anteil auch noch diskrete Anteile beinhaltet.
  
*Die Zufallsgröße  $Y$  mit der  [[Stochastische_Signaltheorie/Verteilungsfunktion|Verteilungsfunktion]]  $F_Y(y)$  gemäß der unteren Skizze besitzt beispielsweise sowohl einen kontinuierlichen als auch einen diskreten Anteil.  
+
*Die Zufallsgröße  $Y$  mit der  [[Theory_of_Stochastic_Signals/Verteilungsfunktion|Verteilungsfunktion]]  $F_Y(y)$  gemäß der unteren Skizze besitzt beispielsweise sowohl einen kontinuierlichen als auch einen diskreten Anteil.  
*Die  [[Stochastische_Signaltheorie/Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsdichtefunktion]]  $f_Y(y)$  erhält man aus  $F_Y(y)$  durch Differentiation.  
+
*Die  [[Theory_of_Stochastic_Signals/Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsdichtefunktion]]  $f_Y(y)$  erhält man aus  $F_Y(y)$  durch Differentiation.  
 
*Aus dem Sprung bei  $y= 1$  in der Verteilungsfunktion (VTF) wird somit ein „Dirac” in der Wahrscheinlichkeitsdichtefunktion (WDF).
 
*Aus dem Sprung bei  $y= 1$  in der Verteilungsfunktion (VTF) wird somit ein „Dirac” in der Wahrscheinlichkeitsdichtefunktion (WDF).
  
Line 26: Line 26:
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel  [[Informationstheorie/Differentielle_Entropie|Differentielle Entropie]].
 
*Die Aufgabe gehört zum  Kapitel  [[Informationstheorie/Differentielle_Entropie|Differentielle Entropie]].
*Weitere Informationen zu gemischten Zufallsgrößen finden Sie im Kapitel   [[Stochastische_Signaltheorie/Verteilungsfunktion|Verteilungsfunktion]] des Buches „Stochastische Signaltheorie”.
+
*Weitere Informationen zu gemischten Zufallsgrößen finden Sie im Kapitel   [[Theory_of_Stochastic_Signals/Verteilungsfunktion|Verteilungsfunktion]] des Buches „Stochastische Signaltheorie”.
 
   
 
   
  

Revision as of 11:51, 9 July 2020

WDF von  $X$  (oben),  und
VTF von  $Y$  (unten)

Man spricht von einer „gemischten Zufallsgröße”, wenn die Zufallsgröße neben einem kontinuierlichen Anteil auch noch diskrete Anteile beinhaltet.

  • Die Zufallsgröße  $Y$  mit der  Verteilungsfunktion  $F_Y(y)$  gemäß der unteren Skizze besitzt beispielsweise sowohl einen kontinuierlichen als auch einen diskreten Anteil.
  • Die  Wahrscheinlichkeitsdichtefunktion  $f_Y(y)$  erhält man aus  $F_Y(y)$  durch Differentiation.
  • Aus dem Sprung bei  $y= 1$  in der Verteilungsfunktion (VTF) wird somit ein „Dirac” in der Wahrscheinlichkeitsdichtefunktion (WDF).
  • In der Teilaufgabe  (4)  soll die differentielle Entropie  $h(Y)$  der Zufallsgröße  $Y$  ermittelt werden (in bit), wobei von folgender Gleichung auszugehen ist:
$$h(Y) = \hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}\hspace{0.03cm}(\hspace{-0.03cm}f_Y)} \hspace{-0.35cm} f_Y(y) \cdot {\rm log}_2 \hspace{0.1cm} \big[ f_Y(y) \big] \hspace{0.1cm}{\rm d}y \hspace{0.05cm}.$$
  • In der Teilaufgabe  (2)  ist die differentielle Entropie  $h(X)$  der Zufallsgröße  $X$  zu berechnen, deren WDF  $f_X(x)$  oben skizziert ist.  Führt man einen geeigneten Grenzübergang durch, so wird auch aus der Zufallsgröße  $X$  eine gemischte Zufallsgröße.





Hinweise:



Fragebogen

1

Wie groß ist die WDF–Höhe  $A$  von  $f_X(x)$  um  $x = 1$?

$A = 0.5/\varepsilon$,
$A = 0.5/\varepsilon+0.25$,
$A = 1/\varepsilon$.

2

Berechnen Sie die differentielle Entropie für verschiedene  $\varepsilon$–Werte.

$ε = 10^{-1}\text{:} \ \ h(X) \ = \ $

$\ \rm bit$
$ε = 10^{-2}\text{:} \ \ h(X) \ = \ $

$\ \rm bit$
$ε = 10^{-3}\text{:} \ \ h(X) \ = \ $

$\ \rm bit$

3

Welches Ergebnis liefert der Grenzwert  $ε \to 0$?

$f_X(x)$  hat nun einen kontinuierlichen und einen diskreten Anteil.
Die differentielle Energie  $h(X)$  ist negativ.
Der Betrag  $|h(X)|$  ist unendlich groß.

4

Welche Aussagen treffen für die Zufallsgröße  $Y$  zu?

Der VTF–Wert an der Stelle  $y = 1$  ist  $0.5$.
$Y$  beinhaltet einen diskreten und einen kontinuierlichen Anteil.
Der diskrete Anteil bei   $Y = 1$  tritt mit  $10\%$  Wahrscheinlichkeit auf.
Der kontinuierliche Anteil von  $Y$  ist gleichverteilt.
Die differentiellen Entropien von  $X$  und  $Y$  sind gleich.


Musterlösung

(1)  Richtig ist der Lösungsvorschlag 2, weil das Integral über die WDF  $1$  ergeben muss:

$$f_X(x) \hspace{0.1cm}{\rm d}x = 0.25 \cdot 2 + (A - 0.25) \cdot \varepsilon \stackrel{!}{=} 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}(A - 0.25) \cdot \varepsilon \stackrel{!}{=} 0.5 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} A = 0.5/\varepsilon +0.25\hspace{0.05cm}.$$


(2)  Die differentielle Entropie (in „bit”) ist wie folgt gegeben:

$$h(X) = \hspace{0.1cm} \hspace{-0.45cm} \int\limits_{{\rm supp}(f_X)} \hspace{-0.35cm} f_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{f_X(x)} \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$

Wir unterteilen nun das Integral in drei Teilintegrale:

$$h(X) = \hspace{-0.25cm} \int\limits_{0}^{1-\varepsilon/2} \hspace{-0.15cm} 0.25 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.25} \hspace{0.1cm}{\rm d}x + \hspace{-0.25cm}\int\limits_{1+\varepsilon/2}^{2} \hspace{-0.15cm} 0.25 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.25} \hspace{0.1cm}{\rm d}x + \hspace{-0.25cm}\int\limits_{1-\varepsilon/2}^{1+\varepsilon/2} \hspace{-0.15cm} \big [0.5/\varepsilon + 0.25 \big ] \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.5/\varepsilon + 0.25} \hspace{0.1cm}{\rm d}x $$
$$ \Rightarrow \hspace{0.3cm} h(X) = 2 \cdot 0.25 \cdot 2 \cdot (2-\varepsilon) - (0.5 + 0.25 \cdot \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm}(0.5/\varepsilon +0.25) \hspace{0.05cm}.$$

Insbesondere erhält man

  • für  $\varepsilon = 0.1$:
$$h(X) =1.9 - 0.525 \cdot {\rm log}_2 \hspace{0.1cm}(5.25) = 1.9 - 1.256 \hspace{0.15cm}\underline{= 0.644\,{\rm bit}} \hspace{0.05cm},$$
  • für  $\varepsilon = 0.01$:
$$h(X) =1.99 - 0.5025 \cdot {\rm log}_2 \hspace{0.1cm}(50.25)= 1.99 - 2.84 \hspace{0.15cm}\underline{= -0.850\,{\rm bit}} \hspace{0.05cm}$$
  • für  $\varepsilon = 0.001$:
$$h(X) =1.999 - 0.50025 \cdot {\rm log}_2 \hspace{0.1cm}(500.25) = 1.999 - 8.967 \hspace{0.15cm}\underline{= -6.968\,{\rm bit}} \hspace{0.05cm}.$$


(3)  Alle Lösungsvorschläge sind zutreffend:

  • Nach dem Grenzübergang   $\varepsilon → 0$   erhält man für die differentielle Entropie
$$h(X) = \lim\limits_{\varepsilon \hspace{0.05cm}\rightarrow \hspace{0.05cm} 0} \hspace{0.1cm}\big[(2-\varepsilon) - (0.5 + 0.25 \cdot \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm}(0.5/\varepsilon +0.25)\big] = 2\,{\rm bit} - 0.5 \cdot \lim\limits_{\varepsilon \hspace{0.05cm}\rightarrow \hspace{0.05cm} 0}\hspace{0.1cm}{\rm log}_2 \hspace{0.1cm}(0.5/\varepsilon) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} - \infty \hspace{0.05cm}.$$
WDF und VTF der gemischten Zufallsgröße  $X$
  • Die Wahrscheinlichkeitsdichtefunktion (WDF) ergibt sich in diesem Fall zu
$$f_X(x) = \left\{ \begin{array}{c} 0.25 + 0.5 \cdot \delta (x-1) \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm} 0 \le x \le 2, \\ {\rm sonst} \\ \end{array} \hspace{0.05cm}.$$

Es handelt sich demzufolge um eine „gemischte” Zufallsgröße mit

  • einem stochastischen, gleichverteilten Anteil im Bereich  $0 \le x \le 2$, und
  • einem diskreten Anteil bei  $x = 1$  mit der Wahrscheinlichkeit  $0.5$.


Die Grafik zeigt links die WDF  $f_X(x)$  und rechts die Verteilungsfunktion  $F_X(x)$.
(4)  Richtig sind die Lösungsvorschläge 2, 3 und 5. Die untere Grafik zeigt die WDF und die VTF der Zufallsgröße  $Y$.  Man erkennt:

WDF und VTF der gemischten Zufallsgröße $Y$
  • $Y$  beinhaltet wie  $X$  einen kontinuierlichen und einen diskreten Anteil.
  • Der diskrete Anteil tritt mit der Wahrscheinlichkeit  ${\rm Pr}(Y = 1) = 0.1$ auf.
  • Da  $F_Y(y)= {\rm Pr}(Y \le y)$  gilt, ergibt sich der rechtsseitige Grenzwert:
$$F_Y(y = 1) = 0.55.$$
  • Der kontinuierliche Anteil ist nicht gleichverteilt;  vielmehr liegt eine Dreieckverteilung vor.
  • Richtig ist auch der letzte Vorschlag:   $h(Y) = h(X) = - \infty$.


Denn:   Bei jeder Zufallsgröße mit einem diskreten Anteil – und ist er auch noch so klein, ist die differentielle Entropie gleich minus unendlich.