Exercise 4.3Z: Conversions of L-value and S-value

From LNTwww
Revision as of 23:25, 27 October 2022 by Noah (talk | contribs)

Function  $y = \tanh {(x)}$ 
in tabular form.

We assume a binary random variable  $x ∈ \{+1, \, -1\}$  with the following probabilities:

$${\rm Pr}(x =+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} p\hspace{0.05cm},$$
$${\rm Pr}(x =-1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} q = 1-p\hspace{0.05cm}.$$

The "reliability" of the symbol  $x$  can be expressed

  • by the  $L$ value (LLR) according to the definition
$$L(x) = {\rm ln} \hspace{0.2cm} \frac{p}{q} = \frac{p}{1 - p}\hspace{0.05cm} \hspace{0.05cm},$$
  • by the so called  $S$ value.
$$S(x) = p- q \hspace{0.05cm}.$$

We have created the term "$S$ value" in order to be able to formulate the following questions more succinctly. In the literature, one sometimes finds the term "soft bit" for this.

As will be shown in subtask (1),  $L(x)$  and  $S(x)$  can be converted into each other.

Subsequently, these functions shall be used to calculate the following quantities, always assuming code length  $n = 3$  :

  • the extrinsic  $L$–value for the third symbol  ⇒   $L_{\rm E}(x_3)$,
  • the a posteriori–$L$–value for the third symbol   ⇒   $L_{\rm APP}(x_3)$.


The calculation should be done for the following codes:




Hints:

$$y = {\rm tanh}(x) = \frac{{\rm e}^{+x/2} - {\rm e}^{-x/2}}{{\rm e}^{+x/2} + {\rm e}^{-x/2}} = \frac{1 - {\rm e}^{-x}}{1 + {\rm e}^{-x}} \hspace{0.05cm}.$$


Questions

1

What is the relationship between  $S$ value and  $L$ value?

$S(x) = \tanh {(L(x))}$,
$S(x) = \tanh {(L(x)/2)}$,
$L(x) = 2 \cdot \tanh^{-1}{(S(x))}$.

2

The $\text{RC (3, 1, 3)}$ is considered. For the apriori $L$ values, let  $\underline{L}_{\rm A} = (+2, -1, +3)$. What is the extrinsic  $L$ value for the symbol  $x_3$?

$L_{\rm E}(x_3) \ = \ $

3

What is the aposteriori $L$ value for the symbol  $x_3$ in this case?

$L_{\rm APP}(x_3) \ = \ $

4

What is the extrinsic $L$ value at  $\text{SPC (3, 2, 2)}$? It is still valid  $\underline{L}_{\rm A} = (+2, -1, +3)$.

$L_{\rm E}(x_3) \ = \ $

5

The apriori probabilities are now  $0.3, \ 0.8$  and  $0.9$. What is the extrinsic  $L$ value for the repetition code?

$L_{\rm E}(x_3) \ = \ $

6

What extrinsic  $L$ value results for the single parity–check code given the same conditions as in  (5) ?

$L_{\rm E}(x_3) \ = \ $


Solution

(1)  For the binary random variable $x ∈ \{+1, -1\}$ with probabilities

  • $p = {\rm Pr}(x = +1)$, and
  • $p = {\rm Pr}(x=-1) = 1-p$


the following definitions apply:

$$L(x) = {\rm ln} \hspace{0.2cm} \frac{p}{q} = \frac{p}{1 - p}\hspace{0.05cm} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} -\infty \le L(x) \le +\infty \hspace{0.05cm},$$
$$S(x) = p- q = 2 \cdot p - 1\hspace{0.05cm} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} -1 \le S(x) \le +1 \hspace{0.05cm}.$$
  • Based on the $S$ value, we get because of $p + q = 1$:
$$S(x) = p- q = \frac{p- q}{p+ q} = \frac{1- q/p}{1+ q/p} \hspace{0.05cm}.$$
  • Simultaneously $q/p = {\rm e}^{-L(x)}$ holds. From this follows:
$$S(x) = \frac{1- {\rm e}^{-L(x)}}{1+ {\rm e}^{-L(x)}} \hspace{0.05cm}.$$
  • Multiplying the numerator and denominator by ${\rm e}^{-L(x)/2}$, we finally get:
Relationship between probability, $L$ value, $S$ value
$$S(x) = \frac{{\rm e}^{+L(x)/2}- {\rm e}^{-L(x)/2}}{{\rm e}^{+L(x)/2}+ {\rm e}^{-L(x)/2}} = {\rm tanh}\big [L(x)/2. \big] \hspace{0.05cm}.$$
  • The inverse function results in
$$L(x) = 2 \cdot {\rm tanh}^{-1}[S(x)] \hspace{0.05cm}.$$


Thus, the proposed solutions 2 and 3 are correct. The table shows the $L$–value $S$–value for some probabilities $p = {\rm Pr}(x=+1)$.


(2)  The extrinsic $L$ value for symbol $x_3$ considers only the apriori–$L$ values $L_{\rm A}(x_1)$ and $L_{\rm A}(x_2)$, but not $L_{\rm A}(x_3)$.

  • For the (3, 1) repetition code, this results in:
$$L_{\rm E}(x_3) = L_{\rm A}(x_1) + L_{\rm A}(x_2) = 2 + (-1) \hspace{0.15cm} \underline{= +1}\hspace{0.05cm}.$$


(3)  Thus, for the aposteriori $L$ value, we obtain:

$$L_{\rm APP}(x_3) = L_{\rm A}(x_3) + L_{\rm E}(x_3) = 3 + 1 \hspace{0.15cm} \underline{= +4}\hspace{0.05cm}.$$


(4)  In the single parity–check code, the corresponding calculation rule is:

$$L_{\rm E}(x_3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 2 \cdot {\rm tanh}^{-1} \hspace{0.05cm} \left [ {\rm tanh}(x_1/2) \cdot {\rm tanh}(x_2/2) \right ] = 2 \cdot {\rm tanh}^{-1} \hspace{0.05cm} \left [ {\rm tanh}(+1) \cdot {\rm tanh}(-0.5) \right ] = 2 \cdot {\rm tanh}^{-1} \hspace{0.05cm} \left [ 0.7616 \cdot (-0.4621) \right ] $$
$$\Rightarrow \hspace{0.3cm}L_{\rm E}(x_3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 2 \cdot {\rm tanh}^{-1} \hspace{0.05cm} \left [ -0.3519 \right ] =-2 \cdot 0.3676\hspace{0.15cm} \underline{= -0.7352}\hspace{0.05cm}.$$

The result ${\rm tanh}^{-1} (-0.3519) = 0.3676$ was taken from the table on the information page.


(5)  For the repetition code of length $n = 3$, the same holds as in subtask (3):

$$L_{\rm E}(x_3) = L_{\rm A}(x_1) + L_{\rm A}(x_2) = -0.847 +1.382 \hspace{0.15cm} \underline{= +0.535}\hspace{0.05cm}.$$

The $L$ values corresponding to the table for subtask (1) were used here, for example ${\rm Pr}(x_1 = +1) = 0.3$   ⇒   $L_{\rm A}(x_1) = -0.847$.


(6)  Since here instead of the apriori $L$ values the apriori probabilities are given, one comes faster to success in comparison with the subtask (4) on the detour over the extrinsic $S$ value.

  • We denote the extrinsic probability for the third symbol here by $P_{\rm E}(x_3)$. For this holds:
$$P_{\rm E}(x_3 = +1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} P_{\rm A}(x_1 = +1) \cdot P_{\rm A}(x_2 = -1) + P_{\rm A}(x_1 = -1) \cdot P_{\rm A}(x_2 = +1) = 0.3 \cdot (1-0.8) + (1-0.3) \cdot 0.8 = 0.62\hspace{0.05cm}.$$
  • This results in for the further variables:
$$S_{\rm E}(x_3) = P_{\rm E}(x_3 = +1) - P_{\rm E}(x_3 = - 1) = 0.62 -0.38 = 0.24\hspace{0.05cm},$$
$$L_{\rm E}(x_3) = 2 \cdot {\rm tanh}^{-1} \hspace{0.05cm} \left [ S_{\rm E}(x_3) \right ] = 2 \cdot {\rm tanh}^{-1} \hspace{0.05cm} (0.24) = 2 \cdot 0.245 \hspace{0.15cm} \underline{= +0.49}\hspace{0.05cm}$$